如何用python中类的方法写出带有bb步长的最速下降算法,并画出Pareto前沿
时间: 2024-05-14 21:17:42 浏览: 129
python实现最速下降法
可以使用以下代码实现带有bb步长的最速下降算法,并画出Pareto前沿:
```
import numpy as np
import matplotlib.pyplot as plt
class BBSGD:
def __init__(self, f, gradient, x0, alpha, beta, epsilon, max_iter):
self.f = f
self.gradient = gradient
self.x = x0
self.alpha = alpha
self.beta = beta
self.epsilon = epsilon
self.max_iter = max_iter
self.history = []
def optimize(self):
for i in range(self.max_iter):
grad = self.gradient(self.x)
if np.linalg.norm(grad) <= self.epsilon:
break
p = -grad
alpha_bb = self.bb_step(p)
self.x += alpha_bb * p
self.history.append(self.x)
def bb_step(self, p):
alpha = self.alpha
beta = self.beta
x_prev = self.history[-1] if len(self.history) > 0 else self.x
grad_prev = self.gradient(x_prev)
grad = self.gradient(self.x)
alpha_bb = (np.dot(x_prev - self.x, x_prev - self.x) / np.dot(x_prev - self.x, grad - grad_prev)) if np.dot(x_prev - self.x, grad - grad_prev) != 0 else alpha
alpha_bb = max(alpha_bb, alpha / beta)
alpha_bb = min(alpha_bb, alpha * beta)
return alpha_bb
def pareto_frontier(self, yvals, xvals):
xy = np.vstack((xvals, yvals)).T
xy = xy[np.lexsort(xy.T)]
x = xy[:,0]
y = xy[:,1]
pareto_front = [0]
for i in range(1, len(x)):
if y[i] >= np.max(y[pareto_front]):
pareto_front.append(i)
return x[pareto_front], y[pareto_front]
def plot_pareto_frontier(self, xvals, yvals, x_label, y_label, title):
x_pareto, y_pareto = self.pareto_frontier(yvals, xvals)
plt.plot(xvals, yvals, '.', color='gray')
plt.plot(x_pareto, y_pareto, '-', color='blue')
plt.xlabel(x_label)
plt.ylabel(y_label)
plt.title(title)
plt.show()
# Example usage:
f = lambda x: (x[0]**2, (x[0]-2)**2)
gradient = lambda x: (2*x[0], 2*(x[0]-2))
x0 = np.array([1])
alpha = 1
beta = 0.5
epsilon = 1e-6
max_iter = 100
bb_sgd = BBSGD(f, gradient, x0, alpha, beta, epsilon, max_iter)
bb_sgd.optimize()
xvals = [x[0] for x in bb_sgd.history]
yvals = [f(x)[0] for x in bb_sgd.history]
bb_sgd.plot_pareto_frontier(xvals, yvals, 'x', 'f(x)', 'Pareto Frontier')
```
这里的 `f` 是目标函数,`gradient` 是目标函数的梯度,`x0` 是初始点,`alpha` 是步长的初始值,`beta` 是步长的缩放因子,`epsilon` 是迭代终止的精度,`max_iter` 是最大迭代次数。
`bb_step` 方法是计算步长的 BB 步长法。
`pareto_frontier` 方法是计算 Pareto 前沿的函数。
`plot_pareto_frontier` 方法是画出 Pareto 前沿的函数。
在上面的示例中,我们优化的目标函数是 $f(x) = (x^2, (x-2)^2)$,其 Paretto 前沿是 $x=0$ 和 $x=2$。
阅读全文