class GuidedBackpropReLUModel: def init(self, model, use_cuda): self.model = model self.model.eval() self.cuda = use_cuda if self.cuda: self.model = model.cuda() for idx, module in self.model.features._modules.items(): if module.class.name == 'ReLU': self.model.features._modules[idx] = GuidedBackpropReLU() def forward(self, input): model1 = nn.Sequential(*list(self.model.children())[1:]) return model1(input) def forward_static(self, input): if self.cuda: output = self.forward(input.cuda()) else: output = self.forward(input) return output def call(self, input, index=None): output = self.forward_static(input) if index is None: index = np.argmax(output.cpu().data.numpy()) one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32) one_hot[0][index] = 1 one_hot = Variable(torch.from_numpy(one_hot), requires_grad=True) if self.cuda: one_hot = torch.sum(one_hot.cuda() * output) else: one_hot = torch.sum(one_hot * output) one_hot.backward() output = input.grad.cpu().data.numpy() output = output[0, :, :, :] return output 代码中input.gard为空怎么解决,代码如何修改
时间: 2024-03-03 17:51:10 浏览: 235
pytorch:model.train和model.eval用法及区别详解
你的代码中有一个小错误,`__init__` 方法的名称应该是 `__init__` 而不是 `init`。
以下是修改后的代码,其中通过调用 `input.requires_grad_(True)` 将输入的 `input` 设置为需要计算梯度,从而解决了 `input.grad` 为空的问题:
```
class GuidedBackpropReLUModel:
def __init__(self, model, use_cuda):
self.model = model
self.model.eval()
self.cuda = use_cuda
if self.cuda:
self.model = model.cuda()
for idx, module in self.model.features._modules.items():
if module.__class__.__name__ == 'ReLU':
self.model.features._modules[idx] = GuidedBackpropReLU()
def forward(self, input):
model1 = nn.Sequential(*list(self.model.children())[1:])
return model1(input)
def forward_static(self, input):
if self.cuda:
output = self.forward(input.cuda())
else:
output = self.forward(input)
return output
def __call__(self, input, index=None):
input.requires_grad_(True) # 将输入设置为需要计算梯度
output = self.forward_static(input)
if index is None:
index = np.argmax(output.cpu().data.numpy())
one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32)
one_hot[0][index] = 1
one_hot = Variable(torch.from_numpy(one_hot), requires_grad=True)
if self.cuda:
one_hot = torch.sum(one_hot.cuda() * output)
else:
one_hot = torch.sum(one_hot * output)
one_hot.backward()
output = input.grad.cpu().data.numpy()
output = output[0, :, :, :]
return output
```
阅读全文