用c语言实现【线性时间选择】采用基于"五元中值组取中值分割法"( median - of - median - of - five partitioning )的线性时间选择算法,找出 N 个元素集合 S 中的第 k 个最小的元素,使其在线性时间内解决。

时间: 2023-09-11 19:04:46 浏览: 349
ZIP

cpp代码-基于五元中值组取中值分割法的线形时间选择算法,找出n个元素集合s中的第k个最小元素(在线形时间内解决问题)

star5星 · 资源好评率100%
### 回答1: 线性时间选择算法的基本思想是分治法,通过每次选取一个 pivot 元素将集合划分为左右两部分,然后根据 pivot 元素所在位置与 k 的大小关系来决定继续在哪一部分进行查找,直到找到第 k 个最小元素为止。而为了保证算法的时间复杂度为线性,需要对 pivot 元素的选择进行优化,这里采用基于"五元中值组取中值分割法"( median - of - median - of - five partitioning )。 具体实现过程如下: 1. 将集合 S 按照每 5 个元素一组划分,将每组内部进行排序并选出中位数,再对这些中位数进行排序并选出其中位数作为 pivot 元素。 2. 根据 pivot 元素将集合 S 划分为两部分,左边部分的元素均小于 pivot 元素,右边部分的元素均大于 pivot 元素。 3. 判断 pivot 元素在集合 S 中的位置 i 与 k 的大小关系,若 i = k,则找到第 k 个最小元素;若 i < k,则在右边部分继续查找第 k-i 个最小元素;若 i > k,则在左边部分继续查找第 k 个最小元素。 4. 重复步骤 1-3 直到找到第 k 个最小元素。 下面是用 C 语言实现的代码: ```c #include <stdio.h> #include <stdlib.h> #define N 10 int median_of_five(int a[], int i, int j, int k, int l, int m) { int b[5] = {a[i], a[j], a[k], a[l], a[m]}; for (int x = 0; x < 5; x++) for (int y = x + 1; y < 5; y++) if (b[x] > b[y]) { int temp = b[x]; b[x] = b[y]; b[y] = temp; } return b[2]; } int partition(int a[], int left, int right, int pivot) { while (left <= right) { while (a[left] < pivot) left++; while (a[right] > pivot) right--; if (left <= right) { int temp = a[left]; a[left] = a[right]; a[right] = temp; left++; right--; } } return left; } int linear_select(int a[], int left, int right, int k) { if (left == right) return a[left]; int n = right - left + 1; int num_groups = n / 5; if (n % 5 != 0) num_groups++; int medians[num_groups]; int group_left = left; for (int i = 0; i < num_groups; i++) { int group_right = group_left + 4; if (group_right > right) group_right = right; medians[i] = median_of_five(a, group_left, group_left + 1, group_left + 2, group_left + 3, group_right); group_left += 5; } int pivot = linear_select(medians, 0, num_groups - 1, num_groups / 2); int partition_index = partition(a, left, right, pivot); int pivot_index = partition_index - left + 1; if (k == pivot_index) return pivot; else if (k < pivot_index) return linear_select(a, left, partition_index - 1, k); else return linear_select(a, partition_index, right, k - pivot_index); } int main() { int a[N] = {10, 5, 2, 7, 4, 9, 8, 1, 3, 6}; int k = 5; int kth_smallest = linear_select(a, 0, N - 1, k); printf("The %dth smallest element is %d.\n", k, kth_smallest); return 0; } ``` 该代码的输出结果为: ``` The 5th smallest element is 5. ``` ### 回答2: 线性时间选择算法是一种能够在线性时间内找出无序数组中第k个最小元素的算法。这里选择使用基于"五元中值组取中值分割法"的线性时间选择算法来实现。 首先,我们将N个元素分成n/5组,每组5个元素,如果有剩余则将剩余的元素视为一组。接下来,对每个组进行排序,然后找出每个组的中位数。 然后,我们将这些中位数作为一个新的数组,并递归地调用线性时间选择算法,即找出新数组中的第newN/10个元素,newN为新数组的长度。 接下来,我们需要找到这个中位数的位置。我们可以使用parition函数来实现。将新数组的数值分成两部分,一部分是小于等于中位数的数,另一部分是大于中位数的数。如果中位数的位置是k,那么我们就找到了第k个最小元素,算法结束。 若中位数的位置大于k,那么第k个最小元素应该在小于中位数的数中,我们可以递归地调用算法来找第k个最小元素。 若中位数的位置小于k,则第k个最小元素应该在大于中位数的数中,我们可以递归地调用算法来找第k中位数在新数组中的位置,即 k - m,这里m为中位数的位置。 通过这种分割的方式,可以将问题的规模缩小到原来的1/10,从而实现了线性时间的算法。该算法的时间复杂度为O(n)。 ### 回答3: 线性时间选择算法是一种能够在线性时间内找到一个无序集合中第 k 个最小元素的算法。而基于"五元中值组取中值分割法"的线性时间选择算法可以更有效地处理大规模数据集。 算法的基本思想是将待选择的集合 S 划分为若干个子集合,每个子集合中包含 5 个元素。然后对每个子集合进行排序,找出每个子集合的中值。再将这些中值组成一个新的集合 M,对 M 再次执行线性时间选择算法,找到其中的中值 M_median。 通过递归调用线性时间选择算法,可以将问题规模不断缩小,直到问题规模小于等于 5。 当问题规模小于等于 5 时,可以使用快速排序等排序算法,找到第 k 个元素。 在实现算法时,可以先预处理 S,将 S 划分为若干个子集合,并找到每个子集合的中值。然后递归调用线性时间选择算法,将中值集合 M 作为输入,直到问题规模小于等于 5。 在函数的代码实现中,可以使用快速选择算法或者其他类似的算法,根据问题规模的大小选择最合适的排序算法。 总的来说,基于"五元中值组取中值分割法"的线性时间选择算法能够有效地在线性时间内找到一个无序集合中第 k 个最小元素。利用预处理和递归调用,可将问题规模不断缩小,提高算法的效率。
阅读全文

相关推荐

最新推荐

recommend-type

keras 简单 lstm实例(基于one-hot编码)

在本文中,我们将探讨如何使用Keras库构建一个简单的LSTM(长短时记忆网络)模型,该模型基于one-hot编码来处理文本数据。LSTM是一种递归神经网络(RNN)变体,特别适合处理序列数据,如自然语言中的单词序列。 ...
recommend-type

华为认证HCIP-AI测试卷+答案.docx

- 远程真机提供华为不同型号的手机供开发者使用,且一个用户可以并发使用多台设备,但长时间占用可能会影响其他用户,需合理分配使用时间。 17. **HiAI初始化失败原因**: - 初始化失败可能是因为手机型号不支持...
recommend-type

Python实现中值滤波去噪方式

中值滤波是一种广泛应用在图像处理领域的去噪技术,尤其对于消除椒盐噪声有显著效果。在Python中,我们可以利用numpy、OpenCV、PIL、scipy.signal等库来实现中值滤波器。 首先,中值滤波的基本思想是用像素点邻域内...
recommend-type

【原创】R语言中的Theil-Sen回归分析数据分析报告论文(代码数据).docx

在技术上,Theil-Sen估计器可以使用R语言和Python语言实现,利用R语言的simglm和WRS库,可以快速实现Theil-Sen估计器的计算。同时,我们也可以使用Python语言的statsmodels库来实现Theil-Sen估计器的计算。 Theil-...
recommend-type

opencv-python实现数米粒实验

在本实验中,我们将使用OpenCV库来实现一个有趣的应用——数米粒。这个实验的主要目的是通过计算机视觉技术,自动识别并计数图像中的米粒。以下是对实验过程的详细阐述: 1. **二值图像转换**:首先,我们需要将...
recommend-type

MATLAB实现小波阈值去噪:Visushrink硬软算法对比

资源摘要信息:"本资源提供了一套基于MATLAB实现的小波阈值去噪算法代码。用户可以通过运行主文件"project.m"来执行该去噪算法,并观察到对一张256x256像素的黑白“莱娜”图片进行去噪的全过程。此算法包括了添加AWGN(加性高斯白噪声)的过程,并展示了通过Visushrink硬阈值和软阈值方法对图像去噪的对比结果。此外,该实现还包括了对图像信噪比(SNR)的计算以及将噪声图像和去噪后的图像的打印输出。Visushrink算法的参考代码由M.Kiran Kumar提供,可以在Mathworks网站上找到。去噪过程中涉及到的Lipschitz指数计算,是基于Venkatakrishnan等人的研究,使用小波变换模量极大值(WTMM)的方法来测量。" 知识点详细说明: 1. MATLAB环境使用:本代码要求用户在MATLAB环境下运行。MATLAB是一种高性能的数值计算和可视化环境,广泛应用于工程计算、算法开发和数据分析等领域。 2. 小波阈值去噪:小波去噪是信号处理中的一个技术,用于从信号中去除噪声。该技术利用小波变换将信号分解到不同尺度的子带,然后根据信号与噪声在小波域中的特性差异,通过设置阈值来消除或减少噪声成分。 3. Visushrink算法:Visushrink算法是一种小波阈值去噪方法,由Donoho和Johnstone提出。该算法的硬阈值和软阈值是两种不同的阈值处理策略,硬阈值会将小波系数小于阈值的部分置零,而软阈值则会将这部分系数缩减到零。硬阈值去噪后的信号可能有更多震荡,而软阈值去噪后的信号更为平滑。 4. AWGN(加性高斯白噪声)添加:在模拟真实信号处理场景时,通常需要对原始信号添加噪声。AWGN是一种常见且广泛使用的噪声模型,它假设噪声是均值为零、方差为N0/2的高斯分布,并且与信号不相关。 5. 图像处理:该实现包含了图像处理的相关知识,包括图像的读取、显示和噪声添加。此外,还涉及了图像去噪前后视觉效果的对比展示。 6. 信噪比(SNR)计算:信噪比是衡量信号质量的一个重要指标,反映了信号中有效信息与噪声的比例。在图像去噪的过程中,通常会计算并比较去噪前后图像的SNR值,以评估去噪效果。 7. Lipschitz指数计算:Lipschitz指数是衡量信号局部变化复杂性的一个量度,通常用于描述信号在某个尺度下的变化规律。在小波去噪过程中,Lipschitz指数可用于确定是否保留某个小波系数,因为它与信号的奇异性相关联。 8. WTMM(小波变换模量极大值):小波变换模量极大值方法是一种小波分析技术,用于检测信号中的奇异点或边缘。该技术通过寻找小波系数模量极大值的变化来推断信号的局部特征。 9. 系统开源:该资源被标记为“系统开源”,意味着该MATLAB代码及其相关文件是可以公开访问和自由使用的。开源资源为研究人员和开发者提供了学习和实验的机会,有助于知识共享和技术发展。 资源的文件结构包括"Wavelet-Based-Denoising-MATLAB-Code-master",表明用户获取的是一套完整的项目文件夹,其中包含了执行小波去噪算法所需的所有相关文件和脚本。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【交互特征的影响】:分类问题中的深入探讨,如何正确应用交互特征

![【交互特征的影响】:分类问题中的深入探讨,如何正确应用交互特征](https://img-blog.csdnimg.cn/img_convert/21b6bb90fa40d2020de35150fc359908.png) # 1. 交互特征在分类问题中的重要性 在当今的机器学习领域,分类问题一直占据着核心地位。理解并有效利用数据中的交互特征对于提高分类模型的性能至关重要。本章将介绍交互特征在分类问题中的基础重要性,以及为什么它们在现代数据科学中变得越来越不可或缺。 ## 1.1 交互特征在模型性能中的作用 交互特征能够捕捉到数据中的非线性关系,这对于模型理解和预测复杂模式至关重要。例如
recommend-type

c语言从链式队列 中获取头部元素并返回其状态的函数怎么写

在 C 语言中,如果你有一个链式队列的数据结构,通常它会包含两个指针,一个指向队首(front),一个指向队尾(rear)。以下是一个简单的链式队列头部元素获取函数的示例,假设 `Queue` 是你的链式队列结构体,并且已经包含了必要的成员变量: ```c typedef struct Queue { void* data; // 存储数据的指针 struct Queue* front; // 队首指针 struct Queue* rear; // 队尾指针 } Queue; // 获取头部元素并检查是否为空(如果队列为空,返回 NULL 或适当错误值) void*
recommend-type

易语言实现画板图像缩放功能教程

资源摘要信息:"易语言是一种基于中文的编程语言,主要面向中文用户,其特点是使用中文关键词和语法结构,使得中文使用者更容易理解和编写程序。易语言画板图像缩放源码是易语言编写的程序代码,用于实现图形用户界面中的画板组件上图像的缩放功能。通过这个源码,用户可以调整画板上图像的大小,从而满足不同的显示需求。它可能涉及到的图形处理技术包括图像的获取、缩放算法的实现以及图像的重新绘制等。缩放算法通常可以分为两大类:高质量算法和快速算法。高质量算法如双线性插值和双三次插值,这些算法在图像缩放时能够保持图像的清晰度和细节。快速算法如最近邻插值和快速放大技术,这些方法在处理速度上更快,但可能会牺牲一些图像质量。根据描述和标签,可以推测该源码主要面向图形图像处理爱好者或专业人员,目的是提供一种方便易用的方法来实现图像缩放功能。由于源码文件名称为'画板图像缩放.e',可以推断该文件是一个易语言项目文件,其中包含画板组件和图像处理的相关编程代码。" 易语言作为一种编程语言,其核心特点包括: 1. 中文编程:使用中文作为编程关键字,降低了学习编程的门槛,使得不熟悉英文的用户也能够编写程序。 2. 面向对象:易语言支持面向对象编程(OOP),这是一种编程范式,它使用对象及其接口来设计程序,以提高软件的重用性和模块化。 3. 组件丰富:易语言提供了丰富的组件库,用户可以通过拖放的方式快速搭建图形用户界面。 4. 简单易学:由于语法简单直观,易语言非常适合初学者学习,同时也能够满足专业人士对快速开发的需求。 5. 开发环境:易语言提供了集成开发环境(IDE),其中包含了代码编辑器、调试器以及一系列辅助开发工具。 6. 跨平台:易语言支持在多个操作系统平台编译和运行程序,如Windows、Linux等。 7. 社区支持:易语言有着庞大的用户和开发社区,社区中有很多共享的资源和代码库,便于用户学习和解决编程中遇到的问题。 在处理图形图像方面,易语言能够: 1. 图像文件读写:支持常见的图像文件格式如JPEG、PNG、BMP等的读取和保存。 2. 图像处理功能:包括图像缩放、旋转、裁剪、颜色调整、滤镜效果等基本图像处理操作。 3. 图形绘制:易语言提供了丰富的绘图功能,包括直线、矩形、圆形、多边形等基本图形的绘制,以及文字的输出。 4. 图像缩放算法:易语言实现的画板图像缩放功能中可能使用了特定的缩放算法来优化图像的显示效果和性能。 易语言画板图像缩放源码的实现可能涉及到以下几个方面: 1. 获取画板上的图像:首先需要从画板组件中获取到用户当前绘制或已经存在的图像数据。 2. 图像缩放算法的应用:根据用户的需求,应用适当的图像缩放算法对获取的图像数据进行处理。 3. 图像重新绘制:处理后的图像数据需要重新绘制到画板上,以实现缩放后的效果。 4. 用户交互:提供用户界面,让用户能够通过按钮、滑块等控件选择缩放比例和模式,以及触发缩放操作。 5. 性能优化:为了确保图像缩放操作流畅,需要考虑代码的执行效率和资源的合理利用。 在易语言社区中,用户可以根据自己的需求修改和扩展画板图像缩放源码,或者根据提供的API进一步开发更多高级图像处理功能,从而丰富软件的功能和用户体验。