证明: Sn_(x)=(S0(x)+S1(x)+…+S(x))/n+1 当n→∞时在[一π, π]一致收敛到f(x)
时间: 2024-06-05 13:07:08 浏览: 121
根据三角函数的定义,可以得到
S_n(x) = sin(x/2) + sin(3x/2) + ... + sin((2n-1)x/2)
将每个sin项拆开,可以得到
S_n(x) = (cos(x/2) - cos(3x/2)) / 2 + (cos(3x/2) - cos(5x/2)) / 2 + ... + (cos((2n-1)x/2) - cos((2n+1)x/2)) / 2
将等式两边同时乘以sin(x/2),可以得到
S_n(x)sin(x/2) = (cos(x/2)sin(x/2) - cos(3x/2)sin(x/2)) / 2 + (cos(3x/2)sin(x/2) - cos(5x/2)sin(x/2)) / 2 + ... + (cos((2n-1)x/2)sin(x/2) - cos((2n+1)x/2)sin(x/2)) / 2
使用三角函数的和差公式,可以将等式右边化简为
S_n(x)sin(x/2) = (sin(2x) - sin(4x)) / 4 + (sin(4x) - sin(6x)) / 4 + ... + (sin(2nx) - sin((2n+2)x)) / 4
合并同类项,可以得到
S_n(x)sin(x/2) = (sin(2x) - sin((2n+2)x)) / 4 = sin((n+1)x)sin(nx) / (2sin(x/2))
因此,可以得到
S_n(x) = (2sin((n+1)x)sin(nx)) / (4sin(x/2)) = sin((n+1)x)sin(nx) / (2n sin(x/2))
现在需要证明的是,当n→∞时,Sn(x)在[一π, π]一致收敛到f(x),其中f(x) = π/2,即
lim n→∞ sup |Sn(x) - f(x)| = 0
由于sin(nx)和sin((n+1)x)都是周期为2π的函数,因此只需要证明f(x)在一个周期内的一致连续性即可。
当|x-y|<π时,有
|f(x) - f(y)| = |π/2 - π/2| = 0
当π≤|x-y|≤2π时,有
|f(x) - f(y)| = |π/2 - (-π/2)| = π
因此,f(x)在一个周期内一致连续,也就是说,当n→∞时,Sn(x)在[一π, π]一致收敛到f(x),即
lim n→∞ sup |Sn(x) - f(x)| = 0
证毕。
阅读全文