epoch与batch和iteration
时间: 2023-09-24 16:05:30 浏览: 152
Keras框架中的epoch、bacth、batch size、iteration使用介绍
Epoch(轮次)是指将训练集中的所有样本全部使用一遍的训练过程。在深度学习中,训练集通常会被分成多个批次(Batch),每个批次作为一个小的数据集进行训练。当所有的批次都训练完成后,就完成了一个Epoch的训练。Epoch的数量通常是一个超参数,需要在训练前手动设置。
Batch(批次)是指在训练过程中,将训练集分成的若干个小批次(mini-batch),每个小批次都会经过一次前向传播和反向传播的过程。一个Batch中的数据量可以根据实际情况进行设置,通常是根据计算资源和模型性能来确定。
Iteration(迭代)是指对一个小的数据集(Batch)进行一次训练的过程。在深度学习中,通常将一个Batch中的数据分为若干个小批次(mini-batch),每个小批次都会经过一次前向传播和反向传播的过程,这个过程就是一次迭代(Iteration)。通常,一个Epoch包含多个Iteration。
所以,Epoch是整个数据集上的一次训练,Batch是对数据集进行分批处理,而Iteration是对一个小批次数据进行一次训练。它们三者是深度学习中训练模型时的基本单位,每个单位都有自己特定的含义和作用。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [Batch、Epoch和Iteration](https://blog.csdn.net/VIAww/article/details/129911981)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
阅读全文