写一段代码用Scikit-learn,可以将数据划分为十份,每次用其中九份作为训练集,一个份作为验证集,循环十次,计算平均准确率和AUC曲线
时间: 2024-05-01 09:18:31 浏览: 31
scikit-learn学习代码
下面是使用Scikit-learn库的代码示例,它可以将数据划分为十份,并将九个子集用作训练集,一个子集用作验证集,循环十次,计算平均准确率和AUC曲线:
```
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import accuracy_score, roc_auc_score
import numpy as np
X = #数据特征
y = #数据标签
skf = StratifiedKFold(n_splits=10)
acc_scores = []
auc_scores = []
for train_index, test_index in skf.split(X, y):
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
#训练模型
model = #你的模型
y_pred = model.predict(X_test)
acc_score = accuracy_score(y_test, y_pred)
auc_score = roc_auc_score(y_test, y_pred)
acc_scores.append(acc_score)
auc_scores.append(auc_score)
mean_acc_score = np.mean(acc_scores)
mean_auc_score = np.mean(auc_scores)
```
注意:这是一个伪代码示例,需要根据具体的情况进行调整。
阅读全文