较为复杂pytorch的cifar-10示例
时间: 2023-07-09 22:30:05 浏览: 127
Python深度学习之用Pytorch实现CIFAR-10数据集的训练模型。
好的,以下是一个基于PyTorch的较为复杂的CIFAR-10示例:
```python
import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.optim as optim
# 定义数据预处理
transform_train = transforms.Compose(
[transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
transform_test = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
# 加载CIFAR-10数据集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=128,
shuffle=False, num_workers=2)
# 定义网络模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(128)
self.conv3 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.bn3 = nn.BatchNorm2d(256)
self.conv4 = nn.Conv2d(256, 512, kernel_size=3, padding=1)
self.bn4 = nn.BatchNorm2d(512)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(512 * 4 * 4, 1024)
self.fc2 = nn.Linear(1024, 512)
self.fc3 = nn.Linear(512, 10)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = nn.functional.relu(x)
x = self.pool(x)
x = self.conv2(x)
x = self.bn2(x)
x = nn.functional.relu(x)
x = self.pool(x)
x = self.conv3(x)
x = self.bn3(x)
x = nn.functional.relu(x)
x = self.pool(x)
x = self.conv4(x)
x = self.bn4(x)
x = nn.functional.relu(x)
x = self.pool(x)
x = x.view(-1, 512 * 4 * 4)
x = self.fc1(x)
x = self.fc2(x)
x = self.fc3(x)
return x
# 定义损失函数和优化器
net = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
# 训练网络
for epoch in range(10): # 训练10个epoch
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99: # 每100个batch输出一次loss
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
# 测试网络
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
```
以上代码中,我们定义了一个包含4个卷积层和3个全连接层的神经网络模型,并使用SGD优化器和交叉熵损失函数进行训练。同时,我们还使用了数据增强技术(随机裁剪和水平翻转)来提高模型的泛化能力。最后,我们在测试集上对训练好的模型进行了测试,并计算了模型的准确率。
阅读全文