mapreduce编写wordcount
时间: 2023-05-02 22:05:19 浏览: 129
MapReduce是一种分布式计算模型,可以用来处理大规模数据。Wordcount是一个很常见的问题,就是统计文本中每个单词出现的次数。使用MapReduce编写Wordcount程序可以将数据分块并在多台计算机上同时处理,提高处理效率。
相关问题
编写并运行MapReduce程序WordCount
WordCount是MapReduce中最基本的程序之一,它用于计算文本中每个单词的出现次数。下面是WordCount的Java代码:
```java
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
```
这个程序的输入是一个文本文件,输出是每个单词出现的次数。在运行之前,你需要安装Hadoop并将输入文件放入HDFS。运行MapReduce程序的命令如下:
```
hadoop jar WordCount.jar WordCount /input /output
```
其中,WordCount.jar是你打包好的Java程序,input是输入文件的路径,output是输出目录的路径。执行这个命令后,MapReduce作业就会在Hadoop集群上运行。
编写一个mapreduce的wordcount程序
以下是一个简单的MapReduce WordCount程序的示例:
Map函数
```python
def mapper(key, value):
words = value.split()
for word in words:
yield word, 1
```
Reduce函数
```python
def reducer(key, values):
count = sum(values)
yield key, count
```
驱动程序
```python
from mrjob.job import MRJob
class WordCount(MRJob):
def mapper(self, key, value):
words = value.split()
for word in words:
yield word, 1
def reducer(self, key, values):
count = sum(values)
yield key, count
if __name__ == '__main__':
WordCount.run()
```
以上代码将读取文本文件中的每一行,并将其传递给Map函数。 Map函数将行拆分为单词,并在每个单词上发出键值对。 Reduce函数将相同的键键值对合并,以计算每个单词的出现次数。 最后,程序将输出每个单词和它的出现次数。
运行程序
```bash
python wordcount.py input.txt > output.txt
```
其中,input.txt是我们要统计单词的文本文件,output.txt是程序运行后输出的结果。
阅读全文