ostu改进的canny分割算法
时间: 2023-08-31 19:10:16 浏览: 179
OSTU改进的Canny分割算法是一种基于OSTU阈值分割的边缘检测方法。该算法首先使用OSTU算法确定图像的二值化阈值,然后使用Canny算法进行边缘检测。在Canny算法中,通过对灰度值进行非极大值抑制、双阈值处理和连接分析等步骤,得到最终的边缘图像。通过将OSTU和Canny算法结合起来,可以实现更加准确的图像边缘检测。
相关问题
使用ostu改进canny算法边缘检测matlab代码
以下是使用Otsu改进Canny算法的MATLAB代码:
```matlab
clc;
clear all;
close all;
% 读取图像
I = imread('lena.jpg');
I = rgb2gray(I);
% Otsu阈值分割
level = graythresh(I);
I_otsu = imbinarize(I, level);
% Canny算法边缘检测
sigma = 1;
[Gmag, Gdir] = imgradient(I);
I_canny = edge(I, 'Canny', [sigma*0.04 sigma*0.1]);
% Otsu阈值分割后的Canny算法边缘检测
I_canny_otsu = I_canny .* uint8(I_otsu);
% 显示结果
subplot(2,2,1); imshow(I); title('原始图像');
subplot(2,2,2); imshow(I_otsu); title('Otsu阈值分割图像');
subplot(2,2,3); imshow(I_canny); title('Canny算法边缘检测图像');
subplot(2,2,4); imshow(I_canny_otsu); title('Otsu阈值分割后的Canny算法边缘检测图像');
```
首先,我们读取图像并进行Otsu阈值分割,然后使用Canny算法进行边缘检测。最后,将Otsu阈值分割后得到的二值图像与Canny算法边缘检测的结果相乘,得到Otsu改进后的Canny算法边缘检测结果。
注意,Otsu阈值分割和Canny算法的参数需要根据具体情况进行调整。
阅读全文