2、有订单数据,格式为: (订单ID,用户ID,时间戳/事件时间,订单金额),请完成如下功能: (1)模拟每1秒钟生成一个订单数据,并模拟随机参生一个延时。 (2)要求每隔10s,计算10秒内,每个用户的订单总金额 (3)并添加Watermaker来解决一定程度上的数据延迟和数据乱序问题(最大允许延迟为5秒)。 (4)并使用OutputTag+allowedLateness解决数据丢失问题 Flink代码怎么打

时间: 2024-02-17 08:02:40 浏览: 98
好的,下面是针对你提出的问题的Flink代码实现: ```python from pyflink.common.serialization import SimpleStringSchema from pyflink.common.typeinfo import Types from pyflink.datastream import StreamExecutionEnvironment from pyflink.datastream.connectors import FlinkKafkaProducer from pyflink.datastream.functions import KeyedProcessFunction from pyflink.datastream.state import ValueStateDescriptor from pyflink.datastream.util import OutputTag from pyflink.streaming.api.environment import CheckpointConfig, StreamExecutionEnvironment from pyflink.streaming.api.functions import AssignerWithPeriodicWatermarks, ProcessFunction from pyflink.streaming.api.watermark import Watermark from pyflink.table.descriptors import Kafka, Schema from pyflink.table.types import DataTypes from pyflink.table.udf import udf import json import random import time # 定义订单数据的生成函数 def generate_order(): order_id = random.randint(1, 1000) user_id = random.randint(1, 100) timestamp = int(time.time() * 1000) order_amount = random.randint(1, 100) delay_time = random.randint(1, 5) time.sleep(delay_time) return (order_id, user_id, timestamp, order_amount) # 定义Watermark生成器 class OrderTimestampExtractor(AssignerWithPeriodicWatermarks): def __init__(self): self.current_timestamp = 0 self.max_delay = 5000 # 最大延迟时间为5秒 def extract_timestamp(self, element): self.current_timestamp = element[2] return self.current_timestamp def get_watermark(self): return Watermark(self.current_timestamp - self.max_delay) # 定义ProcessFunction计算订单总金额 class OrderAmountProcessFunction(ProcessFunction): def process_element(self, element, context, collector): user_id = element[1] order_amount = element[3] state_name = "order_amount" state_descriptor = ValueStateDescriptor(state_name, Types.LONG()) order_amount_state = context.get_state(state_descriptor) if order_amount_state.value() is None: order_amount_state.update(0) order_amount_state.update(order_amount_state.value() + order_amount) context.timer_service().register_event_time_timer(context.timestamp() + 10000) # 注册10秒后的定时器 def on_timer(self, timestamp, context, collector): user_id = context.key[0] state_name = "order_amount" state_descriptor = ValueStateDescriptor(state_name, Types.LONG()) order_amount_state = context.get_state(state_descriptor) order_amount = order_amount_state.value() collector.collect((user_id, order_amount)) order_amount_state.clear() # 定义OutputTag side_output_tag = OutputTag('late-data', Types.TUPLE([Types.INT(), Types.INT(), Types.LONG(), Types.INT()])) # 定义主函数 def main(): # 创建StreamExecutionEnvironment对象 env = StreamExecutionEnvironment.get_execution_environment() env.set_parallelism(1) env.set_stream_time_characteristic(TimeCharacteristic.EventTime) # 定义Kafka连接参数 kafka_properties = { "bootstrap.servers": "localhost:9092", "group.id": "order-group" } # 创建Kafka数据源 kafka_source = Kafka() kafka_source.version('universal') kafka_source.topic('order') kafka_source.properties(kafka_properties) kafka_source.start_from_earliest() # 定义Schema schema = Schema() schema.field("order_id", DataTypes.INT()) schema.field("user_id", DataTypes.INT()) schema.field("timestamp", DataTypes.BIGINT()) schema.field("order_amount", DataTypes.INT()) # 创建TableEnvironment对象 table_env = StreamTableEnvironment.create(env) table_env.connect(kafka_source).with_schema(schema).register_table_source("orders") table_env.connect(FlinkKafkaProducer(topic='order-result', producer_config=kafka_properties, serialization_schema=SimpleStringSchema())).register_table_sink("results") # 定义UDF函数 @udf(input_types=[Types.INT(), Types.LONG(), Types.INT()], result_type=Types.TUPLE([Types.INT(), Types.LONG(), Types.INT()])) def add_watermark(order_id, timestamp, order_amount): return (order_id, timestamp, order_amount) # 使用Watermark生成器生成Watermark orders = table_env.scan("orders") orders = orders.assign_timestamps_and_watermarks(OrderTimestampExtractor()) orders = orders.select("user_id, order_amount, timestamp") orders = orders.process( KeyedProcessFunction() .key_by(lambda x: x[0]) .process(OrderAmountProcessFunction()) .side_output_with_timestamp(side_output_tag) .forward() ) # 处理延迟数据 late_data = orders.get_side_output(side_output_tag) late_data = late_data.assign_timestamps_and_watermarks(OrderTimestampExtractor()) late_data = late_data.select("user_id, order_amount, timestamp") late_data = late_data.process( KeyedProcessFunction() .key_by(lambda x: x[0]) .process(OrderAmountProcessFunction()) .forward() ) # 合并延迟数据 orders = orders.union(late_data) # 定义输出Schema result_schema = Schema() result_schema.field("user_id", DataTypes.INT()) result_schema.field("order_amount", DataTypes.BIGINT()) # 输出结果到Kafka results = orders.group_by("user_id").select("user_id, order_amount.sum as order_amount") results = results.select("user_id, order_amount").insert_into("results") # 执行任务 env.execute() if __name__ == '__main__': main() ``` 上面的代码实现包含了订单数据的生成函数、Watermark生成器、ProcessFunction计算订单总金额、OutputTag、以及主函数的实现。你可以根据自己的需求进行修改和优化。需要注意的是,上面的代码仅供参考,可能需要根据具体情况进行调整和改进。
阅读全文

相关推荐

最新推荐

recommend-type

vue将时间戳转换成自定义时间格式的方法

在Vue.js应用中,有时我们需要将服务器返回的时间戳转换为用户友好的日期和时间格式。以下是一个关于如何在Vue中实现这一功能的详细步骤和解释。 1. **创建date.js辅助函数文件**: 首先,创建一个名为`date.js`的...
recommend-type

java web在高并发和分布式下实现订单号生成唯一的解决方案

在存在并发的情况下,我们可以使用时间戳、用户ID 和随机数来生成唯一的订单号。这个方案可以保证订单号的唯一性,并且能够适应高并发和分布式环境。 方案三:使用 Redis 的原子递增 在高并发和分布式环境下,我们...
recommend-type

Android进阶之使用时间戳计算时间差

使用Date和Calendar类计算时间差的方法是,将两个时间点的时间戳转换为Date对象,然后使用getTime方法获取时间戳,最后计算时间差。 ```java Date d1 = new Date("2012-11-05 12:00:00"); Date d2 = new Date("2012...
recommend-type

Linux/Unix关于时间和时间戳的命令行

在编程和系统管理中,时间戳广泛用于记录事件发生的具体时间,例如用户登录、活动开始或结束等。 在Linux/Unix中,`date`命令可以用来显示当前时间、格式化时间输出,以及将时间戳转换为可读的日期和时间。`date -r...
recommend-type

SQL Server时间戳功能与用法详解

SQL Server时间戳功能是数据库系统中用于追踪记录更改的一种机制,它并不是我们通常理解的与日期和时间相关的时间戳,而是一个与日期和时间无关的唯一二进制数字。时间戳在SQL Server中实际上是名为`rowversion`的...
recommend-type

黑板风格计算机毕业答辩PPT模板下载

资源摘要信息:"创意经典黑板风格毕业答辩论文课题报告动态ppt模板" 在当前数字化教学与展示需求日益增长的背景下,PPT模板成为了表达和呈现学术成果及教学内容的重要工具。特别针对计算机专业的学生而言,毕业设计的答辩PPT不仅仅是一个展示的平台,更是其设计能力、逻辑思维和审美观的综合体现。因此,一个恰当且创意十足的PPT模板显得尤为重要。 本资源名为“创意经典黑板风格毕业答辩论文课题报告动态ppt模板”,这表明该模板具有以下特点: 1. **创意设计**:模板采用了“黑板风格”的设计元素,这种风格通常模拟传统的黑板书写效果,能够营造一种亲近、随性的学术氛围。该风格的模板能够帮助展示者更容易地吸引观众的注意力,并引发共鸣。 2. **适应性强**:标题表明这是一个毕业答辩用的模板,它适用于计算机专业及其他相关专业的学生用于毕业设计课题的汇报。模板中设计的版式和内容布局应该是灵活多变的,以适应不同课题的展示需求。 3. **动态效果**:动态效果能够使演示内容更富吸引力,模板可能包含了多种动态过渡效果、动画效果等,使得展示过程生动且充满趣味性,有助于突出重点并维持观众的兴趣。 4. **专业性质**:由于是毕业设计用的模板,因此该模板在设计时应充分考虑了计算机专业的特点,可能包括相关的图表、代码展示、流程图、数据可视化等元素,以帮助学生更好地展示其研究成果和技术细节。 5. **易于编辑**:一个良好的模板应具备易于编辑的特性,这样使用者才能根据自己的需要进行调整,比如替换文本、修改颜色主题、更改图片和图表等,以确保最终展示的个性和专业性。 结合以上特点,模板的使用场景可以包括但不限于以下几种: - 计算机科学与技术专业的学生毕业设计汇报。 - 计算机工程与应用专业的学生论文展示。 - 软件工程或信息技术专业的学生课题研究成果展示。 - 任何需要进行学术成果汇报的场合,比如研讨会议、学术交流会等。 对于计算机专业的学生来说,毕业设计不仅仅是完成一个课题,更重要的是通过这个过程学会如何系统地整理和表述自己的思想。因此,一份好的PPT模板能够帮助他们更好地完成这个任务,同时也能够展现出他们的专业素养和对细节的关注。 此外,考虑到模板是一个压缩文件包(.zip格式),用户在使用前需要解压缩,解压缩后得到的文件为“创意经典黑板风格毕业答辩论文课题报告动态ppt模板.pptx”,这是一个可以直接在PowerPoint软件中打开和编辑的演示文稿文件。用户可以根据自己的具体需要,在模板的基础上进行修改和补充,以制作出一个具有个性化特色的毕业设计答辩PPT。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

提升点阵式液晶显示屏效率技术

![点阵式液晶显示屏显示程序设计](https://iot-book.github.io/23_%E5%8F%AF%E8%A7%81%E5%85%89%E6%84%9F%E7%9F%A5/S3_%E8%A2%AB%E5%8A%A8%E5%BC%8F/fig/%E8%A2%AB%E5%8A%A8%E6%A0%87%E7%AD%BE.png) # 1. 点阵式液晶显示屏基础与效率挑战 在现代信息技术的浪潮中,点阵式液晶显示屏作为核心显示技术之一,已被广泛应用于从智能手机到工业控制等多个领域。本章节将介绍点阵式液晶显示屏的基础知识,并探讨其在提升显示效率过程中面临的挑战。 ## 1.1 点阵式显
recommend-type

在SoC芯片的射频测试中,ATE设备通常如何执行系统级测试以保证芯片量产的质量和性能一致?

SoC芯片的射频测试是确保无线通信设备性能的关键环节。为了在量产阶段保证芯片的质量和性能一致性,ATE(Automatic Test Equipment)设备通常会执行一系列系统级测试。这些测试不仅关注芯片的电气参数,还包含电磁兼容性和射频信号的完整性检验。在ATE测试中,会根据芯片设计的规格要求,编写定制化的测试脚本,这些脚本能够模拟真实的无线通信环境,检验芯片的射频部分是否能够准确处理信号。系统级测试涉及对芯片基带算法的验证,确保其能够有效执行无线信号的调制解调。测试过程中,ATE设备会自动采集数据并分析结果,对于不符合标准的芯片,系统能够自动标记或剔除,从而提高测试效率和减少故障率。为了
recommend-type

CodeSandbox实现ListView快速创建指南

资源摘要信息:"listview:用CodeSandbox创建" 知识点一:CodeSandbox介绍 CodeSandbox是一个在线代码编辑器,专门为网页应用和组件的快速开发而设计。它允许用户即时预览代码更改的效果,并支持多种前端开发技术栈,如React、Vue、Angular等。CodeSandbox的特点是易于使用,支持团队协作,以及能够直接在浏览器中编写代码,无需安装任何软件。因此,它非常适合初学者和快速原型开发。 知识点二:ListView组件 ListView是一种常用的用户界面组件,主要用于以列表形式展示一系列的信息项。在前端开发中,ListView经常用于展示从数据库或API获取的数据。其核心作用是提供清晰的、结构化的信息展示方式,以便用户可以方便地浏览和查找相关信息。 知识点三:用JavaScript创建ListView 在JavaScript中创建ListView通常涉及以下几个步骤: 1. 创建HTML的ul元素作为列表容器。 2. 使用JavaScript的DOM操作方法(如document.createElement, appendChild等)动态创建列表项(li元素)。 3. 将创建的列表项添加到ul容器中。 4. 通过CSS来设置列表和列表项的样式,使其符合设计要求。 5. (可选)为ListView添加交互功能,如点击事件处理,以实现更丰富的用户体验。 知识点四:在CodeSandbox中创建ListView 在CodeSandbox中创建ListView可以简化开发流程,因为它提供了一个在线环境来编写代码,并且支持实时预览。以下是使用CodeSandbox创建ListView的简要步骤: 1. 打开CodeSandbox官网,创建一个新的项目。 2. 在项目中创建或编辑HTML文件,添加用于展示ListView的ul元素。 3. 创建或编辑JavaScript文件,编写代码动态生成列表项,并将它们添加到ul容器中。 4. 使用CodeSandbox提供的实时预览功能,即时查看ListView的效果。 5. 若有需要,继续编辑或添加样式文件(通常是CSS),对ListView进行美化。 6. 利用CodeSandbox的版本控制功能,保存工作进度和团队协作。 知识点五:实践案例分析——listview-main 文件名"listview-main"暗示这可能是一个展示如何使用CodeSandbox创建基本ListView的项目。在这个项目中,开发者可能会包含以下内容: 1. 使用React框架创建ListView的示例代码,因为React是目前较为流行的前端库。 2. 展示如何将从API获取的数据渲染到ListView中,包括数据的获取、处理和展示。 3. 提供基本的样式设置,展示如何使用CSS来美化ListView。 4. 介绍如何在CodeSandbox中组织项目结构,例如如何分离组件、样式和脚本文件。 5. 包含一个简单的用户交互示例,例如点击列表项时弹出详细信息等。 总结来说,通过标题“listview:用CodeSandbox创建”,我们了解到本资源是一个关于如何利用CodeSandbox这个在线开发环境,来快速实现一个基于JavaScript的ListView组件的教程或示例项目。通过上述知识点的梳理,可以加深对如何创建ListView组件、CodeSandbox平台的使用方法以及如何在该平台中实现具体功能的理解。