transformer的encoder输出是什么
时间: 2023-06-13 19:03:32 浏览: 282
Transformer的encoder输出是一系列经过编码处理的向量,每个向量对应输入序列中的一个位置。这些向量被称为“编码器输出”或“编码器隐藏状态”。编码器输出可以被输入到Transformer的decoder中进行解码处理,生成对应的输出序列。
在具体实现中,编码器输出通常由多个编码器层的最后一个自注意力头的输出拼接而成。每个编码器层的输出包含了该层对输入序列的不同抽象层次的表示,因此多个层的输出可以提供更丰富和准确的信息,有助于提高模型的性能。
相关问题
transformer Encoder
Transformer的Encoder是负责处理输入序列的部分。它通过一系列的层来将输入编码成机器可以容易学习的向量表示。首先,输入经过一个输入嵌入层,将输入转换为向量形式。然后,加入位置编码,为输入添加位置信息。接下来,通过多头注意力层对输入进行处理。然后,将上一步的输出与残差相加,并进行层归一化。之后,通过MLP层进一步处理。最后,再次将上一步的输出与残差相加,并进行层归一化。这样,Encoder将输入序列转换为了机器可以更好学习的表示。\[2\]
#### 引用[.reference_title]
- *1* *3* [李宏毅 Transformer(介绍 + Encoder部分)](https://blog.csdn.net/missgrass/article/details/123342968)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* [5分钟理解transformer中的encoder](https://blog.csdn.net/xiufan1/article/details/122552132)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
transformer encoder
Transformer Encoder 是一种基于自注意力机制(self-attention mechanism)的神经网络结构,用于处理序列数据,如自然语言。它由多个相同的编码器层(encoder layer)堆叠而成,每层包括多头自注意力层(multi-head self-attention layer)和前馈神经网络层(feedforward neural network layer)。
在自注意力层中,每个词向量与自身和其它词向量之间进行注意力计算,以捕捉不同词之间的关系。在前馈神经网络层中,每个词向量经过两个全连接层,以增强表示的表达能力。整个编码器层的输出是每个词向量在上下文中的新表示,可以用于下游任务,如语言建模、机器翻译、文本分类等。Transformer Encoder 的优点是能够并行计算,处理长序列效果好,且解决了循环神经网络中梯度消失和梯度爆炸的问题。
阅读全文