plt.rcParams['font.sans-serif']=['SimHei'] pd.set_option('display.max_columns', None) t = data['label'].value_counts() t.plot(kind = 'bar')
时间: 2024-01-16 19:02:15 浏览: 163
这段代码使用了matplotlib和pandas两个库,目的是将数据集中不同标签的数量进行可视化展示。
第一行代码`plt.rcParams['font.sans-serif']=['SimHei']` 是用来设置matplotlib的字体为中文字体,这里设置的是SimHei。
第二行代码`pd.set_option('display.max_columns', None)` 是用来设置pandas在控制台输出时,显示所有列,不省略。
第三行代码`t = data['label'].value_counts()` 是用来统计数据集中不同标签的数量,返回一个Series类型的对象t,其中每个标签作为索引,对应的数量作为值。
第四行代码`t.plot(kind = 'bar')` 是用来将Series对象t进行可视化展示,这里使用了柱状图(kind='bar')。
相关问题
import numpy as np import pandas as pd from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler from scipy.spatial.distance import cdist import matplotlib.pyplot as plt from pandas import DataFrame from sklearn.decomposition import PCA plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签 plt.rcParams['axes.unicode_minus']=False #用来正常显示负号 pd.set_option('display.max_rows', None)#显示全部行 pd.set_option('display.max_columns', None)#显示全部列 np.set_printoptions(threshold=np.inf) pd.set_option('display.max_columns', 9000) pd.set_option('display.width', 9000) pd.set_option('display.max_colwidth', 9000) df = pd.read_csv(r'附件1.csv',encoding='gbk') X = np.array(df.iloc[:, 1:]) X=X[0:,1:] k=93 kmeans_model = KMeans(n_clusters=k, random_state=123) fit_kmeans = kmeans_model.fit(X) # 模型训练 #查看聚类结果 kmeans_cc = kmeans_model.cluster_centers_ # 聚类中心 print('各类聚类中心为:\n', kmeans_cc) kmeans_labels = kmeans_model.labels_ # 样本的类别标签 print('各样本的类别标签为:\n', kmeans_labels) r1 = pd.Series(kmeans_model.labels_).value_counts() # 统计不同类别样本的数目 print('最终每个类别的数目为:\n', r1) # 输出聚类分群的结果 # cluster_center = pd.DataFrame(kmeans_model.cluster_centers_, # columns=[ str(x) for x in range(1,94)]) # 将聚类中心放在数据框中 # cluster_center.index = pd.DataFrame(kmeans_model.labels_). \ # drop_duplicates().iloc[:, 0] # 将样本类别作为数据框索引 # print(cluster_center)代码解释
这段代码主要是使用KMeans算法对一个数据集进行聚类分析,并输出聚类结果。下面是代码的解释:
1. 导入所需的库
```python
import numpy as np
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from scipy.spatial.distance import cdist
import matplotlib.pyplot as plt
from pandas import DataFrame
from sklearn.decomposition import PCA
```
2. 读取数据集
```python
df = pd.read_csv(r'附件1.csv',encoding='gbk')
X = np.array(df.iloc[:, 1:])
X=X[0:,1:]
```
3. 使用KMeans算法进行聚类分析
```python
k=93
kmeans_model = KMeans(n_clusters=k, random_state=123)
fit_kmeans = kmeans_model.fit(X)
```
4. 输出聚类结果
```python
kmeans_cc = kmeans_model.cluster_centers_
print('各类聚类中心为:\n', kmeans_cc)
kmeans_labels = kmeans_model.labels_
print('各样本的类别标签为:\n', kmeans_labels)
r1 = pd.Series(kmeans_model.labels_).value_counts()
print('最终每个类别的数目为:\n', r1)
```
上述代码中,kmeans_cc表示各个类别的聚类中心,kmeans_labels表示每个样本所属的类别,r1表示每个类别的样本数目。
5. 将聚类中心放在数据框中
```python
# cluster_center = pd.DataFrame(kmeans_model.cluster_centers_,
# columns=[ str(x) for x in range(1,94)])
# 将聚类中心放在数据框中
# cluster_center.index = pd.DataFrame(kmeans_model.labels_). \
# drop_duplicates().iloc[:, 0]
# 将样本类别作为数据框索引
# print(cluster_center)
```
这段代码是将聚类中心放在数据框中,并以样本类别作为索引。但是,这段代码被注释掉了,因此不会被执行。
调试并运行下述案例代码,给代码做注释。在此基础上补充票房 TOP10 的柱状 图展示。 import pandas as pd import numpy as np from matplotlib import pyplot as plt from matplotlib.ticker import MultipleLocator datas = pd.read_csv(r'2015-2020.txt', index_col=0) datas = datas.sort_index(ascending=False) datas = pd.DataFrame(datas.values, index=range(1, 11), \ columns=datas.columns) data2020 = pd.read_csv(r'2020.txt') def drawLines(): ax = plt.subplot(131) for date in datas.columns: plt.plot([10 - i for i in range(datas.shape[0])], \ datas[date], label=date) plt.ylim(0, 600000) ymajorLocator = MultipleLocator(50000) xmajorLocator = MultipleLocator(1) ax.yaxis.set_major_locator(ymajorLocator) ax.xaxis.set_major_locator(xmajorLocator) plt.title('2015-2020 年度票房 Top10 折线图') plt.xlabel('票房名次') plt.grid() plt.legend() def drawPie(): plt.subplot(233) plt.pie(datas['2019'], autopct='%1.1f%%') plt.title('2019 年度票房 Top10 饼图') plt.subplot(236) plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['font.family'] = 'sans-serif' plt.pie(data2020['boxoffice'], autopct='%1.1f%%', \ labels=data2020['name']) plt.title('2020 年度票房 Top10 饼图') if __name__ == '__main__': plt.subplots(figsize=(20, 8)) drawLines() drawPie() plt.show()
```python
# 导入 pandas, numpy, pyplot 和 MultipleLocator 库
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.ticker import MultipleLocator
# 读取数据并按照时间降序排序
datas = pd.read_csv(r'2015-2020.txt', index_col=0)
datas = datas.sort_index(ascending=False)
# 将数据转换为 DataFrame 格式,索引是票房排名,列是年份
datas = pd.DataFrame(datas.values, index=range(1, 11), columns=datas.columns)
# 读取 2020 年数据
data2020 = pd.read_csv(r'2020.txt')
# 绘制 2015-2020 年度票房 Top10 折线图
def drawLines():
ax = plt.subplot(131) # 创建子图
for date in datas.columns: # 循环每年的票房数据
plt.plot([10 - i for i in range(datas.shape[0])], datas[date], label=date) # 绘制折线图
plt.ylim(0, 600000) # 设置 y 轴范围
ymajorLocator = MultipleLocator(50000) # 设置 y 轴主刻度
xmajorLocator = MultipleLocator(1) # 设置 x 轴主刻度
ax.yaxis.set_major_locator(ymajorLocator) # 设置 y 轴主刻度
ax.xaxis.set_major_locator(xmajorLocator) # 设置 x 轴主刻度
plt.title('2015-2020 年度票房 Top10 折线图') # 设置标题
plt.xlabel('票房名次') # 设置 x 轴标签
plt.grid() # 显示网格线
plt.legend() # 显示图例
# 绘制 2019 年度票房 Top10 饼图和 2020 年度票房 Top10 饼图
def drawPie():
plt.subplot(233) # 创建子图
plt.pie(datas['2019'], autopct='%1.1f%%') # 绘制饼图
plt.title('2019 年度票房 Top10 饼图') # 设置标题
plt.subplot(236) # 创建子图
plt.rcParams['font.sans-serif'] = ['SimHei'] # 设置字体
plt.rcParams['font.family'] = 'sans-serif'
plt.pie(data2020['boxoffice'], autopct='%1.1f%%', labels=data2020['name']) # 绘制饼图
plt.title('2020 年度票房 Top10 饼图') # 设置标题
if __name__ == '__main__':
plt.subplots(figsize=(20, 8)) # 创建画布
drawLines() # 绘制折线图
drawPie() # 绘制饼图
plt.show() # 显示图形
```
补充票房 TOP10 的柱状图展示如下:
```python
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
# 读取数据并按照时间降序排序
datas = pd.read_csv(r'2015-2020.txt', index_col=0)
datas = datas.sort_index(ascending=False)
datas = pd.DataFrame(datas.values, index=range(1, 11), columns=datas.columns)
# 绘制柱状图
plt.subplots(figsize=(20, 8))
plt.bar(datas.index, datas['2020'])
plt.xticks(datas.index, datas.index)
plt.title('2020 年度票房 Top10 柱状图')
plt.xlabel('票房排名')
plt.ylabel('票房(万元)')
plt.show()
```
柱状图展示如下:
注意:柱状图只显示了 2020 年的数据。如果需要同时显示所有年份的数据,可以将 `datas` DataFrame 中的数据按照年份分组,再分别绘制柱状图,并将柱状图放在同一张图中。
阅读全文