基于hog的特征目标自动检测算法 MATLAB代码
时间: 2023-09-12 14:06:09 浏览: 113
以下是基于HOG特征的目标自动检测算法的MATLAB代码示例:
首先,需要加载训练好的SVM分类器并且设置HOG特征的参数:
```matlab
% Load trained SVM classifier
load('svm_classifier.mat');
% Set HOG parameters
cellSize = [8 8];
numBins = 9;
blockSize = [2 2];
blockOverlap = [1 1];
hog = vision.HistogramOfOrientedGradients('NumBins', numBins, 'BlockSize', blockSize, 'CellSize', cellSize, 'BlockOverlap', blockOverlap);
```
接着,读取待检测的图像,并且将其大小缩小为原来的1/2:
```matlab
% Read input image
I = imread('test_image.jpg');
% Resize image
I = imresize(I, 0.5);
```
然后,使用滑动窗口技术,对图像进行分块,并且计算每个块的HOG特征描述子:
```matlab
% Set window size and step size
winSize = [128 64];
stepSize = [8 8];
% Initialize bounding box list
bboxList = [];
% Iterate over image blocks
for row = 1:stepSize(1):size(I, 1)-winSize(1)
for col = 1:stepSize(2):size(I, 2)-winSize(2)
% Extract block
block = I(row:row+winSize(1)-1, col:col+winSize(2)-1, :);
% Compute HOG descriptor
hogFeature = hog(block);
% Classify block using SVM classifier
label = predict(svm_classifier, hogFeature');
% If block is positive, add bounding box to list
if label == 1
bboxList = [bboxList; col row winSize(2) winSize(1)];
end
end
end
```
最后,将所有的检测到的目标区域用矩形框标出来:
```matlab
% Draw bounding boxes on image
for i = 1:size(bboxList, 1)
rectangle('Position', bboxList(i,:), 'EdgeColor', 'r', 'LineWidth', 2);
end
% Display image with bounding boxes
figure;
imshow(I);
```
完整的代码如下所示:
```matlab
% Load trained SVM classifier
load('svm_classifier.mat');
% Set HOG parameters
cellSize = [8 8];
numBins = 9;
blockSize = [2 2];
blockOverlap = [1 1];
hog = vision.HistogramOfOrientedGradients('NumBins', numBins, 'BlockSize', blockSize, 'CellSize', cellSize, 'BlockOverlap', blockOverlap);
% Read input image
I = imread('test_image.jpg');
% Resize image
I = imresize(I, 0.5);
% Set window size and step size
winSize = [128 64];
stepSize = [8 8];
% Initialize bounding box list
bboxList = [];
% Iterate over image blocks
for row = 1:stepSize(1):size(I, 1)-winSize(1)
for col = 1:stepSize(2):size(I, 2)-winSize(2)
% Extract block
block = I(row:row+winSize(1)-1, col:col+winSize(2)-1, :);
% Compute HOG descriptor
hogFeature = hog(block);
% Classify block using SVM classifier
label = predict(svm_classifier, hogFeature');
% If block is positive, add bounding box to list
if label == 1
bboxList = [bboxList; col row winSize(2) winSize(1)];
end
end
end
% Draw bounding boxes on image
for i = 1:size(bboxList, 1)
rectangle('Position', bboxList(i,:), 'EdgeColor', 'r', 'LineWidth', 2);
end
% Display image with bounding boxes
figure;
imshow(I);
```
阅读全文