DBSCAN matlab代码实现
时间: 2023-12-14 22:05:12 浏览: 120
DBSCAN算法Matlab实现
4星 · 用户满意度95%
以下是DBSCAN算法的Matlab实现代码:
```matlab
function [clusterIdx, nClusters] = dbscan(X, epsilon, minPoints)
% DBSCAN clustering algorithm
% X: data matrix (nSamples x nFeatures)
% epsilon: neighborhood radius
% minPoints: minimum number of points in a cluster
% clusterIdx: cluster index for each point (-1 for noise)
% nClusters: total number of clusters
% initialize cluster index
nSamples = size(X, 1);
visited = false(nSamples, 1);
clusterIdx = zeros(nSamples, 1);
clusterId = 0;
% calculate pairwise distance matrix
D = pdist2(X, X);
for i = 1:nSamples
if ~visited(i)
visited(i) = true;
% find neighbors
neighbors = find(D(i, :) <= epsilon);
% check if core point
if length(neighbors) >= minPoints
clusterId = clusterId + 1;
clusterIdx(i) = clusterId;
% expand cluster to density-reachable points
j = 1;
while j <= length(neighbors)
k = neighbors(j);
if ~visited(k)
visited(k) = true;
% find k's neighbors
kNeighbors = find(D(k, :) <= epsilon);
if length(kNeighbors) >= minPoints
neighbors = [neighbors, kNeighbors];
end
end
% assign cluster index
if clusterIdx(k) == 0
clusterIdx(k) = clusterId;
end
j = j + 1;
end
else
% mark as noise
clusterIdx(i) = -1;
end
end
end
% count number of clusters
nClusters = max(clusterIdx);
end
```
其中,输入参数X为数据矩阵,epsilon为邻域半径,minPoints为最小点数。输出参数clusterIdx为每个点的聚类标签,-1表示噪声点;nClusters为总聚类数。
阅读全文