yolov5的val.py能不能计算测试集召回率等指标
时间: 2023-12-11 21:02:13 浏览: 104
yolov5 测试数据集
是的,YOLOv5的`val.py`脚本可以计算测试集的召回率等指标。
在YOLOv5的`val.py`脚本中,默认会计算每个类别的精确度和召回率。如果你想计算其他指标,可以通过修改`val.py`脚本来实现。
以下是一个示例代码,展示如何计算测试集的召回率和其他指标:
```python
from utils.general import non_max_suppression
from utils.torch_utils import time_synchronized
# 计算测试集的指标
def test(data_loader, model, device):
model.eval()
true_positives = 0
false_positives = 0
false_negatives = 0
total_objects = 0
for batch_i, (imgs, targets, paths, shapes) in enumerate(data_loader):
imgs = imgs.to(device).float()
targets = targets.to(device).float()
with torch.no_grad():
outputs = model(imgs)
outputs = non_max_suppression(outputs, conf_thres=0.5, iou_thres=0.5)
for output, target in zip(outputs, targets):
if output is None:
false_negatives += target.shape[0]
total_objects += target.shape[0]
continue
# 计算预测结果中每个类别的数量
pred_classes = output[:, -1].long()
pred_counts = torch.zeros((num_classes,), dtype=torch.long, device=device)
for i in pred_classes:
pred_counts[i] += 1
# 计算目标中每个类别的数量
true_classes = target[:, -1].long()
true_counts = torch.zeros((num_classes,), dtype=torch.long, device=device)
for i in true_classes:
true_counts[i] += 1
# 计算true positives, false positives, false negatives
for i in range(num_classes):
true_positives += torch.sum((pred_classes == i) & (true_classes == i)).item()
false_positives += torch.sum((pred_classes == i) & (true_classes != i)).item()
false_negatives += torch.sum((pred_classes != i) & (true_classes == i)).item()
total_objects += target.shape[0]
# 计算指标
precision = true_positives / (true_positives + false_positives)
recall = true_positives / (true_positives + false_negatives)
f1_score = 2 * (precision * recall) / (precision + recall)
accuracy = true_positives / total_objects
return precision, recall, f1_score, accuracy
```
在这个示例代码中,我们使用了`test`函数来计算测试集的召回率、精确度、F1分数和准确率。在函数中,我们首先使用`non_max_suppression`函数对模型输出进行非极大值抑制,然后计算预测结果中每个类别的数量和目标中每个类别的数量。接着,我们使用这些数量计算true positives, false positives, false negatives,并最终计算指标。
阅读全文