mean_p = predict.mean(axis=0)是什么意思
时间: 2024-05-30 10:15:00 浏览: 113
这个代码行是在对预测结果进行操作。"predict" 是一个数组,可能是由模型预测得到的,"mean(axis=0)"则是对这个数组进行操作求平均值,其中的 "axis=0" 表示按照第一维 (即第一个轴,这通常是一个样本) 操作。这行代码的意思是取预测结果的每一个特征的平均值,返回一个包含每一个特征平均值的一维数组。
相关问题
from sklearn.datasets import load_boston import numpy as np import pandas as pd data=pd.read_csv('./data_picture/chapter1/boston_house_prices.csv') data.head() from sklearn.model_selection import train_test_split X=data.drop('MEDV',axis=1) y=data['MEDV'] X=X.values y=y.values X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=33,test_size=0.25) from sklearn.preprocessing import StandardScaler ss_X=StandardScaler() scaler_X=ss_X.fit(X_train) X_train=scaler_X.transform(X_train) X_test=scaler_X.transform(X_test) from sklearn.neural_network import MLPRegressor model = MLPRegressor(solver='lbfgs', hidden_layer_sizes=(15,15), random_state=1) model.fit(X_train, y_train) from sklearn.metrics import r2_score,mean_squared_error,mean_absolute_error print('训练集回归评估指标:') model_score1=model.score(X_train,y_train) print('The accuracy of train data is',model_score1) print('测试集回归评估指标:') model_score2=model.score(X_test,y_test) print('The accuracy of test data is',model_score2) y_test_predict=model.predict(X_test) mse=mean_squared_error(y_test,y_test_predict) print('The value of mean_squared_error:',mse) mae=mean_absolute_error(y_test,y_test_predict) print('The value of mean_absolute_error:',mae)解析一下这段代码
这段代码是一个机器学习模型的训练和评估过程,具体步骤如下:
1. 从sklearn.datasets模块中导入boston数据集。
2. 使用pandas模块读取boston房价数据集,将其存储在data变量中,并显示前5行数据。
3. 从sklearn.model_selection模块中导入train_test_split函数,将数据集划分为训练集和测试集,其中训练集占75%,测试集占25%。
4. 从sklearn.preprocessing模块中导入StandardScaler类,用于对数据进行标准化处理。
5. 对训练集和测试集中的特征数据X进行标准化处理,使用fit()函数对scaler_X进行训练,再使用transform()函数对X_train和X_test进行标准化处理。
6. 从sklearn.neural_network模块中导入MLPRegressor类,用于创建多层感知机回归模型。
7. 创建MLPRegressor对象,并指定模型参数:solver='lbfgs', hidden_layer_sizes=(15, 15), random_state=1。其中,solver参数指定优化算法为拟牛顿法L-BFGS,hidden_layer_sizes参数指定模型中隐藏层的节点数为15,random_state参数指定随机种子。
8. 使用fit()函数对模型进行训练,输入训练集的特征数据X_train和目标数据y_train。
9. 从sklearn.metrics模块中导入r2_score、mean_squared_error和mean_absolute_error函数,用于评估模型的性能。
10. 分别使用score()函数计算训练集和测试集的R2得分,并输出结果。
11. 使用predict()函数对测试集进行预测,计算预测结果与实际结果之间的均方误差和平均绝对误差,并输出结果。
下面的这段python代码,哪里有错误,修改一下:import numpy as np import matplotlib.pyplot as plt import pandas as pd import torch import torch.nn as nn from torch.autograd import Variable from sklearn.preprocessing import MinMaxScaler training_set = pd.read_csv('CX2-36_1971.csv') training_set = training_set.iloc[:, 1:2].values def sliding_windows(data, seq_length): x = [] y = [] for i in range(len(data) - seq_length): _x = data[i:(i + seq_length)] _y = data[i + seq_length] x.append(_x) y.append(_y) return np.array(x), np.array(y) sc = MinMaxScaler() training_data = sc.fit_transform(training_set) seq_length = 1 x, y = sliding_windows(training_data, seq_length) train_size = int(len(y) * 0.8) test_size = len(y) - train_size dataX = Variable(torch.Tensor(np.array(x))) dataY = Variable(torch.Tensor(np.array(y))) trainX = Variable(torch.Tensor(np.array(x[1:train_size]))) trainY = Variable(torch.Tensor(np.array(y[1:train_size]))) testX = Variable(torch.Tensor(np.array(x[train_size:len(x)]))) testY = Variable(torch.Tensor(np.array(y[train_size:len(y)]))) class LSTM(nn.Module): def __init__(self, num_classes, input_size, hidden_size, num_layers): super(LSTM, self).__init__() self.num_classes = num_classes self.num_layers = num_layers self.input_size = input_size self.hidden_size = hidden_size self.seq_length = seq_length self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): h_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) c_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) # Propagate input through LSTM ula, (h_out, _) = self.lstm(x, (h_0, c_0)) h_out = h_out.view(-1, self.hidden_size) out = self.fc(h_out) return out num_epochs = 2000 learning_rate = 0.001 input_size = 1 hidden_size = 2 num_layers = 1 num_classes = 1 lstm = LSTM(num_classes, input_size, hidden_size, num_layers) criterion = torch.nn.MSELoss() # mean-squared error for regression optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate) # optimizer = torch.optim.SGD(lstm.parameters(), lr=learning_rate) runn = 10 Y_predict = np.zeros((runn, len(dataY))) # Train the model for i in range(runn): print('Run: ' + str(i + 1)) for epoch in range(num_epochs): outputs = lstm(trainX) optimizer.zero_grad() # obtain the loss function loss = criterion(outputs, trainY) loss.backward() optimizer.step() if epoch % 100 == 0: print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) lstm.eval() train_predict = lstm(dataX) data_predict = train_predict.data.numpy() dataY_plot = dataY.data.numpy() data_predict = sc.inverse_transform(data_predict) dataY_plot = sc.inverse_transform(dataY_plot) Y_predict[i,:] = np.transpose(np.array(data_predict)) Y_Predict = np.mean(np.array(Y_predict)) Y_Predict_T = np.transpose(np.array(Y_Predict))
在这段代码中,可能存在以下错误:
1. 缺少必要的库或模块。
2. training_set 的文件路径是否正确。
3. training_set 的数据处理是否正确。
4. LSTM 模型的定义是否正确。
5. 训练和预测的代码是否正确。
下面是修改后的代码:
```python
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import torch
import torch.nn as nn
from torch.autograd import Variable
from sklearn.preprocessing import MinMaxScaler
# 读取数据
training_set = pd.read_csv('CX2-36_1971.csv')
training_set = training_set.iloc[:, 1:2].values
# 定义数据处理函数
def sliding_windows(data, seq_length):
x = []
y = []
for i in range(len(data) - seq_length):
_x = data[i:(i + seq_length)]
_y = data[i + seq_length]
x.append(_x)
y.append(_y)
return np.array(x), np.array(y)
# 对数据进行归一化处理
sc = MinMaxScaler()
training_data = sc.fit_transform(training_set)
# 定义窗口长度
seq_length = 1
# 对数据进行窗口划分
x, y = sliding_windows(training_data, seq_length)
# 划分训练集和测试集
train_size = int(len(y) * 0.8)
test_size = len(y) - train_size
dataX = Variable(torch.Tensor(np.array(x)))
dataY = Variable(torch.Tensor(np.array(y)))
trainX = Variable(torch.Tensor(np.array(x[1:train_size])))
trainY = Variable(torch.Tensor(np.array(y[1:train_size])))
testX = Variable(torch.Tensor(np.array(x[train_size:len(x)])))
testY = Variable(torch.Tensor(np.array(y[train_size:len(y)])))
# 定义 LSTM 模型
class LSTM(nn.Module):
def __init__(self, num_classes, input_size, hidden_size, num_layers):
super(LSTM, self).__init__()
self.num_classes = num_classes
self.num_layers = num_layers
self.input_size = input_size
self.hidden_size = hidden_size
self.seq_length = seq_length
self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size,
num_layers=num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, num_classes)
def forward(self, x):
h_0 = Variable(torch.zeros(
self.num_layers, x.size(0), self.hidden_size))
c_0 = Variable(torch.zeros(
self.num_layers, x.size(0), self.hidden_size))
# Propagate input through LSTM
ula, (h_out, _) = self.lstm(x, (h_0, c_0))
h_out = h_out.view(-1, self.hidden_size)
out = self.fc(h_out)
return out
# 定义训练参数
num_epochs = 2000
learning_rate = 0.001
input_size = 1
hidden_size = 2
num_layers = 1
num_classes = 1
# 实例化 LSTM 模型
lstm = LSTM(num_classes, input_size, hidden_size, num_layers)
# 定义损失函数和优化器
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate)
# 训练模型
runn = 10
Y_predict = np.zeros((runn, len(dataY)))
for i in range(runn):
print('Run: ' + str(i + 1))
for epoch in range(num_epochs):
outputs = lstm(trainX)
optimizer.zero_grad()
loss = criterion(outputs, trainY)
loss.backward()
optimizer.step()
if epoch % 100 == 0:
print("Epoch: %d, loss: %1.5f" % (epoch, loss.item()))
lstm.eval()
train_predict = lstm(dataX)
data_predict = train_predict.data.numpy()
dataY_plot = dataY.data.numpy()
# 对结果进行反归一化
data_predict = sc.inverse_transform(data_predict)
dataY_plot = sc.inverse_transform(dataY_plot)
Y_predict[i,:] = np.transpose(np.array(data_predict))
Y_Predict = np.mean(Y_predict, axis=0)
Y_Predict_T = np.transpose(np.array(Y_Predict))
```
阅读全文
相关推荐
















