from BP import BPNeuralNetwork import numpy as np import pandas as pd # 读取 Excel 文件并划分数据集 train_input=pd.read_excel('test.xlsx', nrows=100, usecols=[1, 2, 3, 4, 5, 6,7,8,9,10,11,12,13,14,15, 16,17,18,19,20,21, 22, 23, 24, 25, 26,27,28,29,30,31, 32, 33, 34, 35]) test_input=pd.read_excel('test.xlsx', skiprows=100, nrows=50, usecols=[1, 2, 3, 4, 5, 6,7,8,9,10,11,12,13,14,15, 16,17,18,19,20,21, 22, 23, 24, 25, 26,27,28,29,30,31, 32, 33, 34, 35]) train_output=pd.read_excel('test.xlsx', nrows=100, usecols=[36]) test_output=pd.read_excel('test.xlsx', skiprows=100, nrows=50, usecols=[36]) # 构建神经网络模型并训练 nn = BPNeuralNetwork(num_input=train_input.shape[1], num_hidden=5, num_output=train_output.shape[1], learning_rate=0.1) nn.train(train_input, train_output, num_epochs=500) # 在测试集上进行预测并计算准确率 y_pred = nn.predict(test_input) y_pred_label = np.argmax(y_pred, axis=1) y_test_label = np.argmax(test_output, axis=1) accuracy = np.mean(y_pred_label == y_test_label) print("Accuracy: {:.2f}%".format(accuracy * 100))
时间: 2023-09-20 17:11:04 浏览: 70
你的代码看起来是一个基于BP神经网络的分类模型的训练和预测过程。根据你的代码,以下是你可能需要注意的几个方面:
1. 确保 `BPNeuralNetwork` 类的定义在 `BP.py` 文件中,并且在当前代码文件中通过 `from BP import BPNeuralNetwork` 导入了该类。
2. 确保你已经正确安装了所需的依赖项,例如 `pandas` 和 `numpy`。
3. 请确保文件路径 `'test.xlsx'` 是正确的,并且该文件存在于指定的位置。如果文件不在当前工作目录中,请提供正确的文件路径。
4. 检查你的 Excel 文件中的数据是否符合预期。确保训练集和测试集的输入和输出数据与模型的输入和输出维度相匹配。
5. 请确保构建神经网络模型时,输入层的维度 `num_input` 和输出层的维度 `num_output` 与数据集的输入和输出维度相匹配。
6. 确保在训练神经网络模型之前设置了适当的学习率 `learning_rate` 和训练迭代次数 `num_epochs`。
7. 确保神经网络模型训练成功后,对测试集进行预测,并计算准确率。确保预测结果 `y_pred` 和真实标签 `y_test_label` 的维度相匹配。
如果你遇到任何错误或问题,请提供完整的错误信息和数据集的结构,以便我能够更好地帮助你解决问题。
相关问题
from BP import BPNeuralNetwork import numpy as np import pandas as pd # 读取 Excel 文件并划分数据集 train_input=pd.read_excel('test.xlsx', nrows=100, usecols=[0,1, 2, 3, 4, 5, 6,7,8,9,10,11,12,13,14,15, 16,17,18,19,20,21, 22, 23, 24, 25, 26,27,28,29,30,31, 32, 33, 34]) test_input=pd.read_excel('test.xlsx', skiprows=99, nrows=50, usecols=[0,1, 2, 3, 4, 5, 6,7,8,9,10,11,12,13,14,15, 16,17,18,19,20,21, 22, 23, 24, 25, 26,27,28,29,30,31, 32, 33, 34]) train_output=pd.read_excel('result.xlsx', nrows=100, usecols=[0]) test_output=pd.read_excel('result.xlsx', skiprows=99, nrows=50, usecols=[0]) print(train_input.shape, test_input.shape) print(train_output.shape, test_output.shape) print(train_input)
这段代码读取了一个Excel文件,并将其划分为练集和测试集。首先,使用`pd.read_excel`函数从名为'test.xlsx'的Excel文件中读取前100行作为训练输入数据,并仅使用列索引为0到34的列。接下来,使用相同的方式读取第100行之后的50行作为测试输入数据。接着,使用`pd.read_excel`函数从名为'result.xlsx'的Excel文件中读取前100行作为训练输出数据,并仅使用列索引为0的列。最后,使用相同的方式读取第100行之后的50行作为测试输出数据。
接下来,代码打印了训练输入数据、测试输入数据、训练输出数据和测试输出数据的形状(即行数和列数),以及训练输入数据的内容。
请注意,这段代码使用了`BPNeuralNetwork`类,但是在提供的代码中没有看到该类的导入语句。如果该类定义在另一个文件中,请确保正确地导入它。
import pandas as pd from keras.models import Sequential from keras.layers import Dense import numpy as np from sklearn.metrics import accuracy_score file = pd.read_excel('/Users/zxh-mac/desktop/Edu-Data(A题数据).xlsx') # 第二阶段:转化定性变量为定量变量 使用onehot函数 同时读取新的excel x = pd.get_dummies(file, dtype=int) x.to_excel('/Users/zxh-mac/desktop/Edu-Data(onehot_version).xlsx') data = pd.read_excel('/Users/zxh-mac/desktop/Edu-Data(onehot_version).xlsx') # 第三阶段:实现bp神经网络 train_data = data[:320] test_data = data[320:] train_features = train_data.drop('Class', axis=1).values train_labels = train_data['Class'].values test_features = test_data.drop('Class', axis=1).values test_labels = test_data['Class'].values model = Sequential() model.add(Dense(units=72, activation='relu', input_dim=train_features.shape[1])) model.add(Dense(units=72, activation='relu')) model.add(Dense(units=3, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(train_features, train_labels, epochs=10, batch_size=32, validation_data=(test_features, test_labels), verbose=1) predictions = model.predict(test_features) print(predictions)就是这段 无法确定问题是什么
这段代码的格式有些混乱,建议您按照以下方式进行修改:
1. 将 "import" 语句放在文件开头,便于管理和查看。
2. 在 "import" 语句后加上空行,使代码更易读。
3. 将代码分成多行,以提高可读性。
4. 确认文件路径是否正确,可以使用绝对路径来避免路径错误的问题。
5. 确认您是否安装了 keras 和 sklearn 库。
修改后的代码如下:
```
import pandas as pd
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from sklearn.metrics import accuracy_score
# 读取文件
file = pd.read_excel('/Users/zxh-mac/desktop/Edu-Data(A题数据).xlsx')
# 使用onehot函数转换定性变量为定量变量
x = pd.get_dummies(file, dtype=int)
x.to_excel('/Users/zxh-mac/desktop/Edu-Data(onehot_version).xlsx')
# 读取新的excel
data = pd.read_excel('/Users/zxh-mac/desktop/Edu-Data(onehot_version).xlsx')
# 划分训练集和测试集
train_data = data[:320]
test_data = data[320:]
# 提取特征和标签
train_features = train_data.drop('Class', axis=1).values
train_labels = train_data['Class'].values
test_features = test_data.drop('Class', axis=1).values
test_labels = test_data['Class'].values
# 建立模型
model = Sequential()
model.add(Dense(units=72, activation='relu', input_dim=train_features.shape[1]))
model.add(Dense(units=72, activation='relu'))
model.add(Dense(units=3, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# 训练模型
model.fit(train_features, train_labels, epochs=10, batch_size=32, validation_data=(test_features, test_labels), verbose=1)
# 预测测试集
predictions = model.predict(test_features)
print(predictions)
```
如果问题还存在,建议您给出具体的错误信息或者提示,以便我们更好地帮助您解决问题。
阅读全文