sklearn特征分箱、woe值iv值计算、特征选择代码
时间: 2023-08-13 14:03:51 浏览: 131
好的,为了更好地说明sklearn中特征分箱、woe值iv值计算和特征选择的操作,我来给你提供一些简单的示例代码。
1. 特征分箱
使用preprocessing模块中的KBinsDiscretizer类进行等频分箱:
```python
from sklearn.preprocessing import KBinsDiscretizer
import numpy as np
# 构造一组连续型变量作为示例数据
continuous_var = np.random.rand(1000)
# 进行等频分箱
est = KBinsDiscretizer(n_bins=10, encode='ordinal', strategy='quantile')
est.fit(continuous_var.reshape(-1, 1))
discretized_var = est.transform(continuous_var.reshape(-1, 1))
# 输出分箱后的结果
print(discretized_var[:10])
```
2. WOE值和IV值计算
使用iv_woe模块中的WOE和IV类计算变量的WOE值和IV值:
```python
from iv_woe import iv_woe
import pandas as pd
import numpy as np
# 构造一组示例数据
df = pd.DataFrame({'var1': np.random.rand(1000),
'var2': np.random.rand(1000),
'target': np.random.randint(0, 2, size=1000)})
# 计算变量的WOE值和IV值
iv = iv_woe(df, 'target', ['var1', 'var2'])
print(iv)
```
3. 特征选择
使用feature_selection模块中的SelectKBest类进行卡方检验特征选择:
```python
from sklearn.datasets import load_iris
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
# 加载iris数据集
iris = load_iris()
X, y = iris.data, iris.target
# 进行卡方检验特征选择
selector = SelectKBest(chi2, k=2)
selector.fit_transform(X, y)
# 输出选择的特征
print(selector.get_support(indices=True))
```
希望以上示例代码能够对你有所帮助。
阅读全文