pandas年龄Sex缺失值用平均值填充

时间: 2024-01-26 12:48:37 浏览: 31
可以使用 Pandas 中的 fillna() 函数来填充缺失值。假设数据框的名称为 df,年龄列为 age,性别列为 sex,可以按照如下方式用年龄的平均值填充缺失值: ```python # 计算年龄的平均值 mean_age = df['age'].mean() # 用平均值填充年龄的缺失值 df['age'].fillna(mean_age, inplace=True) # 用众数填充性别的缺失值 mode_sex = df['sex'].mode()[0] df['sex'].fillna(mode_sex, inplace=True) ``` 上述代码首先计算年龄的平均值,然后使用 fillna() 函数将缺失值填充为该平均值。对于性别列,可以使用 mode() 函数计算众数,并用 fillna() 函数将缺失值填充为该众数。注意,使用 inplace=True 参数可以直接修改原始数据框 df,而不是返回一个新的数据框。
相关问题

对 labor 数据集的所有属性列(不包括类别标签列)进行缺失 值填充,对数值型属性采用平均值进行填充;对非数值型属性采用众数进 行填充。

好的,对于这个任务,我们可以按照以下步骤进行: 1. 导入需要的库,读取数据集。 ``` import pandas as pd import numpy as np from sklearn.impute import SimpleImputer data = pd.read_csv('labor.csv') ``` 2. 确定需要填充的属性列及其类型。 ``` numeric_cols = ['wage', 'age'] categorical_cols = ['education', 'race', 'hispanic', 'sex', 'union', 'region', 'jobclass', 'health', 'health_ins'] ``` 3. 对数值型属性采用平均值进行填充。 ``` numeric_imputer = SimpleImputer(missing_values=np.nan, strategy='mean') data[numeric_cols] = numeric_imputer.fit_transform(data[numeric_cols]) ``` 4. 对非数值型属性采用众数进行填充。 ``` categorical_imputer = SimpleImputer(missing_values=np.nan, strategy='most_frequent') data[categorical_cols] = categorical_imputer.fit_transform(data[categorical_cols]) ``` 5. 检查数据集是否还存在缺失值。 ``` data.isnull().sum() ``` 完整代码如下: ``` import pandas as pd import numpy as np from sklearn.impute import SimpleImputer data = pd.read_csv('labor.csv') numeric_cols = ['wage', 'age'] categorical_cols = ['education', 'race', 'hispanic', 'sex', 'union', 'region', 'jobclass', 'health', 'health_ins'] numeric_imputer = SimpleImputer(missing_values=np.nan, strategy='mean') data[numeric_cols] = numeric_imputer.fit_transform(data[numeric_cols]) categorical_imputer = SimpleImputer(missing_values=np.nan, strategy='most_frequent') data[categorical_cols] = categorical_imputer.fit_transform(data[categorical_cols]) data.isnull().sum() ```

以下代码为什么不能生成热力图:import pandas as pd import seaborn as sns import numpy as np titanic_df = pd.read_csv( "C:\\Users\\Lucky Week\\Documents\\WeChat Files\\wxid_jjvhmzk4khs412\\FileStorage\\File\\2023-05\\titanic\\train.csv") # 删除不必要的列 titanic_df.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1, inplace=True) # 删除缺失值 titanic_df.dropna(inplace=True) # 将性别变量转换为数值变量 titanic_df['Sex'] = titanic_df['Sex'].replace({'male': 0, 'female': 1}) # 将登船港口变量转换为数值变量 titanic_df['Embarked'] = titanic_df['Embarked'].replace({'C': 0, 'Q': 1, 'S': 2}) grouped = titanic_df.groupby('Pclass') # 求每个船票等级的平均年龄 grouped['Age'].mean() # 将数据集按照性别和船票等级进行透视 pivot_df = pd.pivot_table(titanic_df, values='Survived', index='Sex', columns='Pclass') print(pivot_df.head()) sns.heatmap(data=pivot_df.head())

这段代码可能无法生成热力图的原因可能是由于 `pivot_df.head()` 返回的数据框中包含了缺失值,而 `seaborn.heatmap()` 函数默认不会显示缺失值所在的单元格,导致生成的热力图不完整。你可以尝试将缺失值填充为 0 或其他数值,或者将 `seaborn.heatmap()` 函数的 `annot` 参数设置为 `True`,这样可以在热力图上显示每个单元格的数值,并且缺失值将被显示为空白单元格。修改后的代码如下: ``` import pandas as pd import seaborn as sns import numpy as np titanic_df = pd.read_csv("C:\\Users\\Lucky Week\\Documents\\WeChat Files\\wxid_jjvhmzk4khs412\\FileStorage\\File\\2023-05\\titanic\\train.csv") # 删除不必要的列 titanic_df.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1, inplace=True) # 删除缺失值 titanic_df.dropna(inplace=True) # 将性别变量转换为数值变量 titanic_df['Sex'] = titanic_df['Sex'].replace({'male': 0, 'female': 1}) # 将登船港口变量转换为数值变量 titanic_df['Embarked'] = titanic_df['Embarked'].replace({'C': 0, 'Q': 1, 'S': 2}) grouped = titanic_df.groupby('Pclass') # 求每个船票等级的平均年龄 grouped['Age'].mean() # 将数据集按照性别和船票等级进行透视 pivot_df = pd.pivot_table(titanic_df, values='Survived', index='Sex', columns='Pclass') # 将缺失值填充为 0 pivot_df.fillna(0, inplace=True) # 使用 seaborn.heatmap 函数绘制热力图,并显示每个单元格的数值 sns.heatmap(data=pivot_df.head(), annot=True) ``` 这样修改后的代码应该可以成功生成热力图。

相关推荐

写出以下代码每一步的算法描述、实现步骤与结果分析:import pandas as pd from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score df = pd.read_csv("C:/Users/PC/Desktop/train.csv") df = df.drop(["Name", "Ticket", "Cabin"], axis=1) # 删除无用特征 df = pd.get_dummies(df, columns=["Sex", "Embarked"]) # 将分类特征转换成独热编码 df = df.fillna(df.mean()) # 使用平均值填充缺失值 X = df.drop(["Survived"], axis=1) y = df["Survived"] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) dtc = DecisionTreeClassifier(random_state=42) dtc.fit(X_train, y_train) y_pred_dtc = dtc.predict(X_test) pruned_dtc = DecisionTreeClassifier(random_state=42, ccp_alpha=0.015) pruned_dtc.fit(X_train, y_train) y_pred_pruned_dtc = pruned_dtc.predict(X_test) rfc = RandomForestClassifier(n_estimators=100, random_state=42) rfc.fit(X_train, y_train) y_pred_rfc = rfc.predict(X_test) metrics = {"Accuracy": accuracy_score, "Precision": precision_score, "Recall": recall_score, "F1-Score": f1_score} results = {} for key in metrics.keys(): results[key] = {"Decision Tree": metrics[key](y_test, y_pred_dtc), "Pruned Decision Tree": metrics[key](y_test, y_pred_pruned_dtc), "Random Forest": metrics[key](y_test, y_pred_rfc)} results_df = pd.DataFrame(results) print(results_df)

# 导入相关库 import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score,roc_auc_score,roc_curve # 读取数据 df = pd.read_csv('C:/Users/E15/Desktop/机器学习作业/第一次作业/第一次作业/三个数据集/Titanic泰坦尼克号.csv') # 数据预处理 df = df.drop(["Name", "Ticket", "Cabin"], axis=1) # 删除无用特征 df = pd.get_dummies(df, columns=["Sex", "Embarked"]) # 将分类特征转换成独热编码 df = df.fillna(df.mean()) # 使用平均值填充缺失值 # 划分数据集 X = df.drop(["Survived"], axis=1) y = df["Survived"] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 决策树 dtc = DecisionTreeClassifier(random_state=42) dtc.fit(X_train, y_train) y_pred_dtc = dtc.predict(X_test) # 剪枝决策树 pruned_dtc = DecisionTreeClassifier(random_state=42, ccp_alpha=0.015) pruned_dtc.fit(X_train, y_train) y_pred_pruned_dtc = pruned_dtc.predict(X_test) # 随机森林 rfc = RandomForestClassifier(n_estimators=100, random_state=42) rfc.fit(X_train, y_train) y_pred_rfc = rfc.predict(X_test) # 计算评价指标 metrics = {"Accuracy": accuracy_score, "Precision": precision_score, "Recall": recall_score, "F1-Score": f1_score, "AUC": roc_auc_score} results = {} for key in metrics.keys(): if key == "AUC": results[key] = {"Decision Tree": roc_auc_score(y_test, y_pred_dtc), "Pruned Decision Tree": roc_auc_score(y_test, y_pred_pruned_dtc), "Random Forest": roc_auc_score(y_test, y_pred_rfc)} else: results[key] = {"Decision Tree": metrics[key](y_test, y_pred_dtc), "Pruned Decision Tree": metrics[key](y_test, y_pred_pruned_dtc), "Random Forest": metrics[key](y_test, y_pred_rfc)} # 打印评价指标的表格 results_df = pd.DataFrame(results) print(results_df)怎么打印auv图

最新推荐

recommend-type

setuptools-33.1.1-py2.py3-none-any.whl

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

超级简单的地图操作工具开发可疑应急,地图画点,画线,画区域,获取地图经纬度等

解压密码:10086007 参考:https://blog.csdn.net/qq_38567039/article/details/138872298?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22138872298%22%2C%22source%22%3A%22qq_38567039%22%7D 获取地图经纬度等 超级简单的地图操作工具开发可疑应急,echars的地图画点,画线,画区域 <script type="text/javascript" src="echarts.min.js"></script> <!-- Uncomment this line if you want to use map--> <script type="text/javascript" src="china.js"></script> <script type="text/javascript" src="world.js"></script>
recommend-type

java进销存管理系统(jsp+mssql).zip

java进销存管理系统(jsp+mssql)
recommend-type

launcher (1).apk

launcher (1).apk
recommend-type

setuptools-38.4.0-py2.py3-none-any.whl

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。