matlab视频跟踪车辆,利用MeanShift算法实现跟踪过程,并将车辆用红色方框框出
时间: 2024-05-05 18:17:41 浏览: 65
以下是利用MeanShift算法在MATLAB中实现车辆跟踪的代码:
```matlab
clc; clear all; close all;
% 读取视频文件
video = VideoReader('traffic.avi');
% 选择车辆区域
frame = read(video, 1);
figure; imshow(frame);
rect = getrect;
x = rect(1);
y = rect(2);
w = rect(3);
h = rect(4);
% 初始化MeanShift算法
numBins = 16;
targetModel = getHistogram(frame, x, y, w, h, numBins);
% 跟踪车辆
figure;
while hasFrame(video)
frame = readFrame(video);
[x, y, w, h] = MeanShift(frame, x, y, w, h, targetModel, numBins);
rectangle('Position', [x, y, w, h], 'EdgeColor', 'r', 'LineWidth', 2);
drawnow;
end
function [x, y, w, h] = MeanShift(frame, x, y, w, h, targetModel, numBins)
% 获取目标模板的直方图
targetHist = getHistogram(frame, x, y, w, h, numBins);
% 计算目标模板与当前帧的差异
diff = sqrt(targetModel ./ targetHist);
diff(isnan(diff)) = 0;
diff(isinf(diff)) = 0;
% 计算新的目标位置
[maxVal, maxIdx] = max(diff);
x = x + (maxIdx(2) - floor(numBins/2)) * w/numBins;
y = y + (maxIdx(1) - floor(numBins/2)) * h/numBins;
% 更新目标模板
targetModel = getHistogram(frame, x, y, w, h, numBins);
% 返回新的目标位置
w = w;
h = h;
end
function hist = getHistogram(frame, x, y, w, h, numBins)
% 提取ROI区域并转换为HSV颜色空间
roi = frame(y:y+h, x:x+w, :);
roi = rgb2hsv(roi);
% 计算直方图
hist = zeros(numBins, numBins, numBins);
for i = 1:h
for j = 1:w
hIdx = ceil(roi(i,j,1) * numBins);
sIdx = ceil(roi(i,j,2) * numBins);
vIdx = ceil(roi(i,j,3) * numBins);
hist(hIdx, sIdx, vIdx) = hist(hIdx, sIdx, vIdx) + 1;
end
end
hist = hist / sum(hist(:));
end
```
代码中首先读取视频文件,并让用户选择车辆区域。然后根据这个区域初始化MeanShift算法,并在每一帧中跟踪车辆的位置。在跟踪过程中,先计算当前帧中目标模板的直方图,然后计算目标模板与当前帧的差异,并找到最大差异处的位置作为新的目标位置。最后更新目标模板并继续跟踪下一帧。在每一帧中,将跟踪到的车辆位置用红色方框框出。
阅读全文