matlap利用Haar小波变换对一幅灰度图像分别进行一级小波分解和二级小波分解,得到各个部分的系数并组合在一起显示成一幅图像。. Matlab中调用DWT的命令:[LL_1,HL_1,LH_1,HH_1]=dwt2(I,'haar') 表示利用Haar小波基对图像I进行2维离散小波变换,输出结果是4个矩阵
时间: 2024-03-03 14:49:25 浏览: 200
您的描述有误,正确的命令应该是`[cA1, cH1, cV1, cD1] = dwt2(I, 'haar')`。以下是使用DWT实现一级小波分解和二级小波分解的代码示例:
一级小波分解:
```matlab
% 读入灰度图像
img = imread('gray_image.jpg');
% 进行一级小波分解
[cA1, cH1, cV1, cD1] = dwt2(img, 'haar');
% 将小波系数组合在一起
coeffs1 = [cA1, cH1; cV1, cD1];
% 显示分解后的小波系数图像
figure;
subplot(2,2,1); imshow(cA1, []); title('Approximation coefficients');
subplot(2,2,2); imshow(cH1, []); title('Horizontal detail coefficients');
subplot(2,2,3); imshow(cV1, []); title('Vertical detail coefficients');
subplot(2,2,4); imshow(cD1, []); title('Diagonal detail coefficients');
figure; imshow(coeffs1, []); title('Combined coefficients');
```
二级小波分解:
```matlab
% 进行二级小波分解
[cA2, cH2, cV2, cD2] = dwt2(img, 'haar');
[cA1, cH1, cV1, cD1] = dwt2(cA2, 'haar');
% 将小波系数组合在一起
coeffs2 = [cA1, cH1, zeros(size(cA1)); cV1, cD1, zeros(size(cV1)); zeros(size(cA1)), zeros(size(cH1)), cH2; zeros(size(cV1)), zeros(size(cD1)), cV2; zeros(size(cH1)), zeros(size(cV1)), cD2];
% 显示分解后的小波系数图像
figure;
subplot(2,3,1); imshow(cA2, []); title('Approximation coefficients');
subplot(2,3,2); imshow(cH2, []); title('Horizontal detail coefficients');
subplot(2,3,3); imshow(cV2, []); title('Vertical detail coefficients');
subplot(2,3,4); imshow(cD2, []); title('Diagonal detail coefficients');
subplot(2,3,5); imshow(cH1, []); title('Horizontal detail coefficients');
subplot(2,3,6); imshow(cV1, []); title('Vertical detail coefficients');
figure; imshow(coeffs2, []); title('Combined coefficients');
```
注意,在二级小波分解中,需要先对原始图像进行一级小波分解,再对低频部分进行一级小波分解。最终的小波系数矩阵需要按照特定的排列方式组合在一起。
阅读全文