plt.scatter(x=data.age[data.target==1], y=data.chol[data.target==1], c="orange"
时间: 2024-02-22 11:58:32 浏览: 60
这是一个使用matplotlib库绘制散点图的例子,其中`data`是一个数据集,`age`是数据集中的一个特征,`chol`是数据集中的另一个特征,`target`是数据集中的目标变量。
这个例子中,我们选择`target`变量为1的样本,以`age`作为x轴,`chol`作为y轴,绘制出散点图,并将散点的颜色设置为橙色。
下面是一个完整的例子:
```python
import matplotlib.pyplot as plt
import pandas as pd
# 读取数据集
data = pd.read_csv("heart.csv")
# 绘制散点图
plt.scatter(x=data.age[data.target==1], y=data.chol[data.target==1], c="orange")
plt.xlabel("age")
plt.ylabel("chol")
plt.show()
```
这个例子中,我们使用了pandas库来读取数据集,并使用matplotlib库来绘制散点图。
相关问题
df1 = data[data.cluster==0] df2 = data[data.cluster==1] df3 = data[data.cluster==2] df4 = data[data.cluster==3] df5 = data[data.cluster==4] plt.scatter(df1.Returns,df1.Variance,color='green',label='cluster 0') plt.scatter(df2.Returns,df2.Variance,color='red',label='cluster 1') plt.scatter(df3.Returns,df3.Variance,color='black',label='cluster 2') plt.scatter(df4.Returns,df4.Variance,color='yellow',label='cluster 3') plt.scatter(df5.Returns,df5.Variance,color='yellow',label='cluster 4') plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color='purple',marker='*',label='centroid') plt.xlabel('Returns') plt.ylabel('Variance') plt.legend()解释一下
这段代码是对聚类结果进行可视化展示,首先通过筛选出每个聚类的数据子集,分别赋值给 df1~df5 这 5 个变量。然后,使用 matplotlib 库的 scatter() 方法,分别将每个聚类的数据点在二维坐标系中绘制出来。其中,每个聚类使用不同的颜色进行标识,如 cluster 0 使用绿色、cluster 1 使用红色、cluster 2 使用黑色、cluster 3 使用黄色、cluster 4 使用紫色。通过 scatter() 方法还绘制了每个聚类的质心 centroid,使用紫色星号进行标识。最后,通过 xlabel() 和 ylabel() 方法设置了坐标轴的标签,通过 legend() 方法添加了图例。这样,我们可以通过图像直观地观察到聚类结果,进而进行后续的分析和决策制定。
data = iris_data.data X = [x[0] for x in data] Y = [x[1] for x in data] # plt.scatter(X, Y, c=iris_data.target, marker='x')
这段代码的作用是从一个名为iris_data的数据中取出数据,并创建两个新的列表X和Y。X列表中的元素是iris_data中data列表中每个子列表的第0个元素,Y列表中的元素是iris_data中data列表中每个子列表的第1个元素。
阅读全文