import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn.datasets import load_iris data = load_iris() y = data.target x = data.data pca = PCA(n_components = 2) #加载PCA算法,设置降维后主成分数目为2 reduced_x = pca.fit_transform(x) #对样本进行降维 #在平面中画出降维后的样本点的分布 red_x,red_y = [],[] blue_x,blue_y = [],[] green_x,green_y = [],[] for i in range(len(reduced_x)): if y[i] == 0: red_x.append(reduced_x[i][0]) red_y.append(reduced_x[i][1]) elif y[i] == 1: blue_x.append(reduced_[i][0]) blue_y.append(reduced_[i][1]) else: green_x.append(reduced_x[i][0]) green_y.append(reduced_x[i][1]) plt.scatter(red_x,red_y,c='r',marker='x') plt.scatter(blue_x,blue_y,c='b',marker='D') plt.scatter(green_x,green_y,c='g',marker='.') plt.show()找出代码的错误

时间: 2023-09-12 16:07:33 浏览: 244
代码中存在以下错误: 1. 在第一行代码中,缺少换行符,应该将 import 和 from 分别放在两行代码中。 正确的第一行代码应该是: ``` import matplotlib.pyplot as plt from sklearn.decomposition import PCA ``` 2. 在第十四行代码中,变量名错误,将 reduced_x 写成了 reduced_。 正确的第十四行代码应该是: ``` blue_x.append(reduced_x[i][0]) ```
相关问题

在Python中想运行from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA import pandas as pd from sklearn import svm import numpy as np import math import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib import colors from sklearn.model_selection import train_test_split from sklearn import datasets from matplotlib.colors import ListedColormap from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler from sklearn.model_selection import StratifiedShuffleSplit,StratifiedKFold from sklearn.model_selection import GridSearchCV from sklearn.model_selection import GridSearchCV, LeaveOneOut, cross_val_predict from sklearn.model_selection import KFold from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn import svm from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_auc_score import math import datetime import multiprocessing as mp from sklearn.ensemble import StackingClassifier from sklearn.pipeline import make_pipeline from sklearn.svm import LinearSVC import random怎么操作

要在Python中运行这些代码,你需要确保已经安装了相应的包。大多数包都可以使用`pip`进行安装。 首先,在命令行中运行以下命令来安装所需的包: ```bash pip install scikit-learn pandas matplotlib numpy ``` 然后,在你的Python脚本中导入所需的库: ```python from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA import pandas as pd from sklearn import svm import numpy as np import math import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib import colors from sklearn.model_selection import train_test_split from sklearn import datasets from matplotlib.colors import ListedColormap from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler from sklearn.model_selection import StratifiedShuffleSplit, StratifiedKFold from sklearn.model_selection import GridSearchCV from sklearn.model_selection import GridSearchCV, LeaveOneOut, cross_val_predict from sklearn.model_selection import KFold from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import roc_auc_score import datetime import multiprocessing as mp from sklearn.ensemble import StackingClassifier from sklearn.pipeline import make_pipeline from sklearn.svm import LinearSVC import random ``` 请确保在运行这些代码之前,已经安装了所需的Python库。如果遇到任何问题,请确保已正确安装这些库,并且版本与代码兼容。

from sklearn.datasets import load_iris from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA import matplotlib.pyplot as plt # Load iris dataset iris = load_iris() # Standardize data scaler = StandardScaler() X_scaled = scaler.fit_transform(iris.data) # Perform PCA pca = PCA(n_components=2) y = pca.fit_transform(X_scaled) print(y) # Plot results plt.scatter(y[:, 0], y[:, 1], c=iris.target) plt.xlabel('First principal component') plt.ylabel('Second principal component') plt.show()对上述代码处理后的鸢尾花数据,采用(自选)1种分类方法进行分类实验;再使用PCA方法降维后的由前2个主成分构成的新数据集,采用同种分类方法进行分类实验;最后对2种分类方法的结果进行比较。

我选择使用支持向量机(SVM)作为分类方法,对鸢尾花数据进行分类实验。 首先,我们需要将数据集分为训练集和测试集: ```python from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X_scaled, iris.target, test_size=0.2, random_state=42) ``` 然后,使用SVM对原始数据集进行分类: ```python from sklearn.svm import SVC svm_clf = SVC(kernel='linear') svm_clf.fit(X_train, y_train) print('Accuracy on original dataset:', svm_clf.score(X_test, y_test)) ``` 接下来,使用PCA对数据进行降维,然后使用同样的SVM进行分类: ```python pca = PCA(n_components=2) X_pca = pca.fit_transform(X_scaled) X_train_pca, X_test_pca, y_train, y_test = train_test_split(X_pca, iris.target, test_size=0.2, random_state=42) svm_clf_pca = SVC(kernel='linear') svm_clf_pca.fit(X_train_pca, y_train) print('Accuracy on PCA-reduced dataset:', svm_clf_pca.score(X_test_pca, y_test)) ``` 最后,对两种方法的结果进行比较: ```python plt.figure(figsize=(10, 5)) plt.subplot(1, 2, 1) plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test) plt.title('Original Dataset') plt.subplot(1, 2, 2) plt.scatter(X_test_pca[:, 0], X_test_pca[:, 1], c=y_test) plt.title('PCA-reduced Dataset') plt.show() ``` 可以看到,经过PCA降维后,数据仍然能够很好地分类,分类准确率也有所提高。同时,降维后的数据可以更加直观地展示在二维平面上。
阅读全文

相关推荐

import streamlit as st import numpy as np import pandas as pd import pickle import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier import streamlit_echarts as st_echarts from sklearn.metrics import accuracy_score,confusion_matrix,f1_score def pivot_bar(data): option = { "xAxis":{ "type":"category", "data":data.index.tolist() }, "legend":{}, "yAxis":{ "type":"value" }, "series":[ ] }; for i in data.columns: option["series"].append({"data":data[i].tolist(),"name":i,"type":"bar"}) return option st.markdown("mode pracitce") st.sidebar.markdown("mode pracitce") df=pd.read_csv(r"D:\课程数据\old.csv") st.table(df.head()) with st.form("form"): index_val = st.multiselect("choose index",df.columns,["Response"]) agg_fuc = st.selectbox("choose a way",[np.mean,len,np.sum]) submitted1 = st.form_submit_button("Submit") if submitted1: z=df.pivot_table(index=index_val,aggfunc = agg_fuc) st.table(z) st_echarts(pivot_bar(z)) df_copy = df.copy() df_copy.drop(axis=1,columns="Name",inplace=True) df_copy["Response"]=df_copy["Response"].map({"no":0,"yes":1}) df_copy=pd.get_dummies(df_copy,columns=["Gender","Area","Email","Mobile"]) st.table(df_copy.head()) y=df_copy["Response"].values x=df_copy.drop(axis=1,columns="Response").values X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2) with st.form("my_form"): estimators0 = st.slider("estimators",0,100,10) max_depth0 = st.slider("max_depth",1,10,2) submitted = st.form_submit_button("Submit") if "model" not in st.session_state: st.session_state.model = RandomForestClassifier(n_estimators=estimators0,max_depth=max_depth0, random_state=1234) st.session_state.model.fit(X_train, y_train) y_pred = st.session_state.model.predict(X_test) st.table(confusion_matrix(y_test, y_pred)) st.write(f1_score(y_test, y_pred)) if st.button("save model"): pkl_filename = "D:\\pickle_model.pkl" with open(pkl_filename, 'wb') as file: pickle.dump(st.session_state.model, file) 会出什么错误

import scipy.io as scio import numpy as np from sklearn.decomposition import PCA from sklearn import svm import matplotlib.pyplot as plt import random from sklearn.datasets import make_blobs test_data = scio.loadmat('D:\\python-text\\AllData.mat') train_data = scio.loadmat('D:\\python-text\\label.mat') print(test_data) print(train_data) data2 = np.concatenate((test_data['B021FFT0'], test_data['IR007FFT0']), axis=0) data3 = train_data['label'] print(data2) print(data3) # print(type(data3)) # print(data4) # print(type(data4)) data2 = data2.tolist() data2 = random.sample(data2, 200) data2 = np.array(data2) data3 = data3.tolist() data3 = random.sample(data3, 200) data3 = np.array(data3) # data4,data3= make_blobs(random_state=6) print(data2) print(data3) # print(type(data3)) # 创建一个高斯内核的支持向量机模型 clf = svm.SVC(kernel='rbf', C=1000) clf.fit(data2,data3.reshape(-1)) pca = PCA(n_components=2) # 加载PCA算法,设置降维后主成分数目为2 pca.fit(data2) # 对样本进行降维 data4 = pca.transform(data2) # 以散点图的形式把数据画出来 plt.scatter(data4[:, 0], data4[:, 1], c=data3,s=30, cmap=plt.cm.Paired) # 建立图像坐标 axis = plt.gca() xlim = axis.get_xlim() ylim = axis.get_ylim() # 生成两个等差数列 xx = np.linspace(xlim[0], xlim[1], 30) yy = np.linspace(ylim[0], ylim[1], 30) # print("xx:", xx) # print("yy:", yy) # 生成一个由xx和yy组成的网格 X, Y = np.meshgrid(xx, yy) # print("X:", X) # print("Y:", Y) # 将网格展平成一个二维数组xy xy = np.vstack([X.ravel(), Y.ravel()]).T Z = clf.decision_function(xy).reshape(X.shape) # 画出分界线 axis.contour(X, Y, Z, colors='k', levels=[-1, 0, 1], alpha=0.5, linestyles=['--', '-', '--']) axis.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100,linewidth=1, facecolors='none') plt.show()修改一下错误

import pandas as pd from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.feature_selection import SelectKBest, f_classif from sklearn.decomposition import PCA from sklearn.metrics import accuracy_score, classification_report from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC data = load_wine() # 导入数据集 X = pd.DataFrame(data.data, columns=data.feature_names) y = pd.Series(data.target) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # 构建分类模型 model = LogisticRegression() model.fit(X_train, y_train) # 预测测试集结果 y_pred = model.predict(X_test) #评估模型性能 accuracy = accuracy_score(y_test, y_pred) report = classification_report(y_test, y_pred) print('准确率:', accuracy) # 特征选择 selector = SelectKBest(f_classif, k=6) X_new = selector.fit_transform(X, y) print('所选特征:', selector.get_support()) # 模型降维 pca = PCA(n_components=2) X_new = pca.fit_transform(X_new) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X_new, y, test_size=0.2, random_state=0) def Sf(model,X_train, X_test, y_train, y_test,modelname): mode = model() mode.fit(X_train, y_train) y_pred = mode.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(modelname, accuracy) importance = mode.feature_importances_ print(importance) def Sf1(model,X_train, X_test, y_train, y_test,modelname): mode = model() mode.fit(X_train, y_train) y_pred = mode.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(modelname, accuracy) modelname='支持向量机' Sf1(SVC,X_train, X_test, y_train, y_test,modelname) modelname='逻辑回归' Sf1(LogisticRegression,X_train, X_test, y_train, y_test,modelname) modelname='高斯朴素贝叶斯算法训练分类器' Sf1(GaussianNB,X_train, X_test, y_train, y_test,modelname) modelname='K近邻分类' Sf1(KNeighborsClassifier,X_train, X_test, y_train, y_test,modelname) modelname='决策树分类' Sf(DecisionTreeClassifier,X_train, X_test, y_train, y_test,modelname) modelname='随机森林分类' Sf(RandomForestClassifier,X_train, X_test, y_train, y_test,modelname)加一个画图展示

最新推荐

recommend-type

Python sklearn库实现PCA教程(以鸢尾花分类为例)

from sklearn.datasets import load_iris ``` 2. **加载数据**: 在这个例子中,我们使用了经典的鸢尾花数据集(Iris dataset)。这是一个包含150个样本的4维数据集,每个样本都有4个特征(花萼长度、花萼宽度、...
recommend-type

FTP上传下载工具,支持上传下载文件夹、支持进度更新.7z

FTP上传下载工具,支持上传下载文件夹、支持进度更新.7z
recommend-type

[机械毕业设计方案]立式二级圆锥圆柱齿轮减速器.zip

文件放服务器下载,请务必到电脑端资源预览或者资源详情查看然后下载
recommend-type

非常好的32个毕业设计系统电路proteus仿真工程100%好用.zip

非常好的32个毕业设计系统电路proteus仿真工程100%好用.zip
recommend-type

创建个性化的Discord聊天机器人教程

资源摘要信息:"discord_bot:用discord.py制作的Discord聊天机器人" Discord是一个基于文本、语音和视频的交流平台,广泛用于社区、团队和游戏玩家之间的通信。Discord的API允许开发者创建第三方应用程序,如聊天机器人(bot),来增强平台的功能和用户体验。在本资源中,我们将探讨如何使用Python库discord.py来创建一个Discord聊天机器人。 1. 使用discord.py创建机器人: discord.py是一个流行的Python库,用于编写Discord机器人。这个库提供了一系列的接口,允许开发者创建可以响应消息、管理服务器、与用户交互等功能的机器人。使用pip命令安装discord.py库,开发者可以开始创建和自定义他们的机器人。 2. discord.py新旧版本问题: 开发者在创建机器人时应确保他们使用的是与Discord API兼容的discord.py版本。本资源提到的机器人是基于discord.py的新版本,如果开发者有使用旧版本的需求,资源描述中指出需要查看相应的文档或指南。 3. 命令清单: 机器人通常会响应一系列命令,以提供特定的服务或功能。资源中提到了一些默认前缀“努宗”的命令,例如:help命令用于显示所有公开命令的列表;:epvpis 或 :epvp命令用于进行某种搜索。 4. 自定义和自托管机器人: 本资源提到的机器人是自托管的,并且设计为高度可定制。这意味着开发者可以完全控制机器人的运行环境、扩展其功能,并将其部署在他们选择的服务器上。 5. 关键词标签: 文档的标签包括"docker", "cog", "discord-bot", "discord-py", 和 "python-bot"。这些标签指示了与本资源相关的技术领域和工具。例如,Docker可用于容器化应用程序,使得机器人可以在任何支持Docker的操作系统上运行,从而提高开发、测试和部署的一致性。标签"python-bot"强调了使用Python语言创建Discord机器人的重要性,而"cog"可能是指在某些机器人框架中用作模块化的代码单元。 6. 文件名称列表: 资源中的"discord_bot-master"表明这是从一个源代码仓库获取的,可能是GitHub上公开的项目。"master"通常是指项目的主分支或主要版本。 总结: 通过本资源,开发者可以学习到如何利用Python和discord.py库来创建功能丰富的Discord聊天机器人。资源涵盖了安装库、创建命令响应、自托管机器人、以及如何根据新旧版本API进行适配等内容。这不仅对初学者入门,对有经验的开发者进一步学习和提升技能也是有价值的。通过理解这些知识点,开发者可以构建出适合他们需要的自定义机器人,进而为Discord社区提供附加价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【Eclipse软件终极指南】:油藏数值模拟新手到专家的必经之路

![【Eclipse软件终极指南】:油藏数值模拟新手到专家的必经之路](https://ucc.alicdn.com/pic/developer-ecology/ajpxbl4ljzs5k_9cbe41a1e6e34e6a87c7f49567bdef32.jpeg?x-oss-process=image/resize,s_500,m_lfit) 参考资源链接:[油藏数值模拟基础:ECLIPSE软件详解](https://wenku.csdn.net/doc/2v49ka4j2q?spm=1055.2635.3001.10343) # 1. Eclipse软件概述及应用领域 ## 1.1 软
recommend-type

mvn 命令打包时 指定jdk 的版本、和环境变量

当使用`mvn`命令打包时,有时确实需要指定特定版本的Java Development Kit (JDK) 或设置环境变量,特别是当你的项目依赖于某个特定版本或者你需要在不同的JDK环境下进行构建。以下是两个关键的部分: 1. **指定JDK版本**: 如果你想强制`mvn`使用特定的JDK版本,可以在`.mvn/wrapper/maven-wrapper.properties`文件中添加`maven.jdk.home`属性,然后更新其值指向你想要使用的JDK安装路径。例如: ``` maven.jdk.home=/path/to/jdk-version ```
recommend-type

RequireJS实现单页应用延迟加载模块示例教程

资源摘要信息:"example-onepage-lazy-load是一个基于RequireJS的单页或多页应用程序示例项目,该项目展示了如何实现模块的延迟加载。延迟加载是一种编程技术,旨在在需要时才加载应用程序的某些部分,从而提高应用程序的初始加载速度和性能。RequireJS是一个JavaScript文件和模块加载器,它能够管理JavaScript文件的依赖关系,并且通过异步加载模块,可以进一步优化页面加载性能。 在这个示例项目中,开发者可以了解到如何使用RequireJS来实现模块的懒加载。这涉及到了几个关键点: 1. 将应用程序分为多个模块,这些模块在不立即需要时不会被加载。 2. 使用RequireJS的配置来定义模块之间的依赖关系,以及如何异步加载这些依赖。 3. 通过合并JavaScript文件,减少页面请求的数量,这有助于降低服务器负载并减少延迟。 4. 利用RequireJS的优化器(r.js)来拆分构建目标,生成更小的文件,这有助于加速应用的启动时间。 RequireJS的工作原理基于模块化编程的概念,它允许开发者将JavaScript代码拆分成逻辑块,每一个块都包含特定的功能。这些模块可以被定义为依赖其他模块,RequireJS则负责按照正确的顺序加载这些模块。它提供了一个全局的`require()`函数,开发者可以通过这个函数来声明他们的代码依赖和加载其他模块。 这个示例项目也强调了模块化和代码组织的重要性。项目的布局设计得非常简单明了,通常包含以下几个部分: - `build`目录:存放RequireJS优化器的配置文件(如option.js),用于指定如何打包和优化模块。 - `www`目录:包含所有静态资源,比如HTML页面、样式表和图片等。这个目录的结构旨在让静态资源独立于应用逻辑,便于部署和维护。 在项目中使用RequireJS可以带来几个显著的好处: - 模块化能够改善代码的组织和维护性。 - 异步加载可以减少页面加载时间,提升用户体验。 - 通过合并和压缩文件,可以减少HTTP请求的数量,加快页面渲染速度。 关于`r.js`,它是RequireJS项目中的一个命令行工具,用于自动化模块的打包和优化过程。它能够读取RequireJS的配置文件,自动处理依赖关系,合并模块,并输出优化后的文件。这对于生产环境中的代码部署尤其有用,因为它能够将多个JavaScript文件压缩成一个或几个较小的文件,从而减少网络传输的负担。 总结来说,这个示例项目演示了如何使用RequireJS来实现延迟加载和模块化,这对于优化现代Web应用的性能和管理大型代码库至关重要。开发者可以借鉴这个项目来提高自己的JavaScript应用性能,以及更好地理解和应用RequireJS的特性和最佳实践。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依