如何在PSPNet的SPP模块最末端加入条件随机场,请给出详细代码
时间: 2023-06-18 08:05:52 浏览: 191
PSPNet中的SPP模块最末端是全连接层,可以在全连接层后面加入条件随机场(CRF)层,以获得更好的语义分割结果。下面是一个示例代码,展示了如何在PSPNet的SPP模块最末端加入CRF:
```python
import torch.nn as nn
import torch.nn.functional as F
class PSPNet(nn.Module):
def __init__(self, n_classes=21, sizes=(1, 2, 3, 6), psp_size=512, deep_features_size=1024):
super(PSPNet, self).__init__()
# some layers defined here
# SPP module
self.spp = SpatialPyramidPooling(sizes=sizes, in_channels=deep_features_size)
# classifier
self.fc1 = nn.Conv2d(int(deep_features_size * len(sizes)), psp_size, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(psp_size)
self.fc2 = nn.Conv2d(psp_size, n_classes, kernel_size=1)
# CRF layer
self.crf = CRF(n_classes)
def forward(self, x):
# some forward operations defined here
# SPP module
x = self.spp(x)
# classifier
x = self.fc1(x)
x = self.bn1(x)
x = F.relu(x)
x = F.dropout(x, p=0.5, training=self.training)
x = self.fc2(x)
# CRF layer
x = self.crf(x)
return x
class CRF(nn.Module):
def __init__(self, num_classes):
super(CRF, self).__init__()
self.num_classes = num_classes
self.crf = DenseCRF(21, 21, 5)
def forward(self, x):
# CRF inference
x = self.crf(x)
return x
```
在这个示例代码中,我们把CRF层定义为一个单独的nn.Module,并在PSPNet的forward()函数中调用它。CRF层使用了一个DenseCRF库,它需要安装并导入才能使用。
阅读全文