decision transformer
时间: 2023-04-30 16:00:39 浏览: 68
决策转换器(Decision Transformer)是一种基于深度学习的模型,用于处理决策问题。它采用了自注意力机制和图神经网络的思想,能够将输入的决策问题转换为一个概率分布,从而实现自动决策。该模型在多个领域都有应用,如自然语言处理、推荐系统等。
相关问题
Decision transformer
Decision Transformer是一个将强化学习问题转化为条件序列建模的体系结构。它利用了Transformer体系结构的简单性和可伸缩性,以及语言建模方面的相关经验,如GPT-x和BERT。与传统的强化学习方法不同,Decision Transformer通过利用随机屏蔽Transformer输出来确定最优操作。通过将自回归模型设置在期望的回报、过去的状态和行动上,Decision Transformer模型可以生成实现期望回报的未来行动。尽管简单,Decision Transformer在Atari、OpenAI Gym和Key-to-Door任务上的性能与或超过了最先进的强化学习基线模型。[1]
Decision Transformer的网络结构可以看作是Transformer的Decoder部分的修改,主要使用了masked multi-head self-attention。它是一种纯监督学习方法,用于解决离线强化学习问题。与传统的马尔科夫决策过程(MDP)不同,Decision Transformer在训练时可以获取非常长期的信息,不再满足马尔科夫性。[2][3]
Decision Transformer
Decision Transformer是一个将强化学习问题转化为条件序列建模的体系结构。它利用了Transformer体系结构的简单性和可伸缩性,以及语言建模方面的相关经验,如GPT-x和BERT。与传统的强化学习方法不同,Decision Transformer通过利用随机屏蔽Transformer输出来确定最优操作。通过将自回归模型设置在期望的回报、过去的状态和行动上,Decision Transformer可以生成实现期望回报的未来行动。尽管简单,Decision Transformer在Atari、OpenAI Gym和Key-to-Door任务上的性能与或超过了最先进的强化学习基线模型。\[1\]
Decision Transformer的网络结构可以看作是Transformer的Decoder部分的修改,主要使用了masked multi-head self-attention。\[2\]它是一种纯监督学习方法,用于解决离线强化学习问题。与传统的马尔科夫决策过程(MDP)不同,Decision Transformer在训练时可以获取非常长期的信息,不再满足马尔科夫性。\[3\]
#### 引用[.reference_title]
- *1* [决策Transformer:通过序列建模的强化学习](https://blog.csdn.net/zzh1464501547/article/details/117756403)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* *3* [NeurIPS论文解读|Decision Transformer: 通过序列建模解决离线强化学习问题](https://blog.csdn.net/m0_55289267/article/details/125871135)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文