graph attention network

时间: 2023-04-30 16:00:40 浏览: 47
图注意力网络(Graph Attention Network,GAT)是一种用于图神经网络的模型,它使用注意力机制来学习节点之间的关系。GAT可以在节点之间进行信息传递,并且可以对节点进行分类、聚类和预测等任务。它是一种非常有效的图神经网络模型,已经被广泛应用于社交网络、生物信息学、推荐系统等领域。
相关问题

heterogeneous graph attention network

异构图注意力网络(Heterogeneous Graph Attention Network,简称HAN)是一种用于处理异构图数据的深度学习模型。在传统的图神经网络中,所有节点和边都被视为同质的,但在现实世界中,很多图数据都是由不同类型的节点和边构成的。HAN的特点是可以有效地处理这种异构的图数据。 HAN模型通过对每个节点类型和边类型分别进行注意力计算,来捕捉不同类型节点和边之间的关系,从而提高模型性能。该模型可以用于各种任务,例如节点分类、链接预测和推荐系统等。 总之,HAN模型是一种能够有效处理异构图数据的深度学习模型,它通过注意力计算来捕捉不同类型节点和边之间的关系,可以用于各种实际应用场景。

注意力机制代码_深入理解图注意力机制(Graph Attention Network)

好的,关于注意力机制的代码,我们先来了解一下图注意力机制(Graph Attention Network,简称GAT)。 GAT是一种基于图结构的注意力机制,它在图结构中进行节点分类、图分类等任务时,能够自适应地学习每个节点在不同邻居节点上所占的重要性,从而更准确地进行分类。下面是一个简单的GAT实现: ```python import torch import torch.nn as nn import torch.nn.functional as F class GraphAttentionLayer(nn.Module): def __init__(self, in_features, out_features, dropout, alpha, concat=True): super(GraphAttentionLayer, self).__init__() self.in_features = in_features self.out_features = out_features self.dropout = dropout self.alpha = alpha self.concat = concat self.W = nn.Parameter(torch.zeros(size=(in_features, out_features))) nn.init.xavier_uniform_(self.W.data, gain=1.414) self.a = nn.Parameter(torch.zeros(size=(2*out_features, 1))) nn.init.xavier_uniform_(self.a.data, gain=1.414) self.leakyrelu = nn.LeakyReLU(self.alpha) def forward(self, h, adj): Wh = torch.mm(h, self.W) a_input = self._prepare_attentional_mechanism_input(Wh) e = self.leakyrelu(torch.matmul(a_input, self.a).squeeze(2)) zero_vec = -9e15*torch.ones_like(e) attention = torch.where(adj > 0, e, zero_vec) attention = F.softmax(attention, dim=1) attention = F.dropout(attention, self.dropout, training=self.training) h_prime = torch.matmul(attention, Wh) if self.concat: return F.elu(h_prime) else: return h_prime def _prepare_attentional_mechanism_input(self, Wh): N = Wh.size()[0] Wh_repeated_in_chunks = Wh.repeat_interleave(N, dim=0) Wh_repeated_alternating = Wh.repeat(N, 1) all_combinations_matrix = torch.cat([Wh_repeated_in_chunks, Wh_repeated_alternating], dim=1) return all_combinations_matrix.view(N, N, 2 * self.out_features) ``` 在这个代码中,我们定义了一个名为GraphAttentionLayer的类,它继承于nn.Module类。在它的__init__方法中,我们定义了一些必要的参数,包括输入特征维度、输出特征维度、dropout率、LeakyReLU函数的负斜率系数以及是否将节点特征与注意力机制的输出进行拼接。W和a是需要学习的参数,其中W是线性变换的权重矩阵,a是注意力机制的权重矩阵。我们使用xavier_uniform_方法对这两个参数进行初始化。 在forward方法中,我们首先将节点特征矩阵h与权重矩阵W相乘,得到Wh。然后,我们通过_prepare_attentional_mechanism_input方法将Wh转换为用于注意力计算的输入矩阵a_input。接着,我们将a_input与注意力权重矩阵a相乘,得到每个节点与其邻居之间的注意力系数e。我们使用LeakyReLU函数将e中的负值裁剪掉。然后,我们对每个节点的邻居节点计算softmax,得到它们之间的注意力权重。我们使用dropout对注意力权重进行随机失活,以防止过拟合。最后,我们将注意力权重与Wh相乘,得到每个节点的新特征h_prime。如果concat参数为True,我们将h_prime与原始节点特征进行拼接并使用ELU函数作为输出;否则,我们直接返回h_prime作为输出。 需要注意的是,这个代码中的实现是基于PyTorch框架的,如果你使用其他的深度学习框架,可能需要做一些调整。同时,这个代码只是GAT的一个简单实现,如果你想深入学习GAT,还需要阅读相关论文并了解更多细节。

相关推荐

hierarchical-graph-attention-network-master是一个使用分层图注意力网络(Hierarchical Graph Attention Network)进行训练和预测的项目。该项目主要针对一种特定的数据集。 该数据集可以是一个图数据集,其中包含多个节点和边,每个节点代表一个实体或对象,每个边代表节点之间的关系或连接。 具体来说,数据集可能包含以下内容: 1. 节点信息:每个节点具有一些特征或属性,描述了节点的性质。这些特征可以是结构性的,如节点的ID或位置,也可以是属性性的,如节点的词向量表示或其他自定义的特征描述。 2. 边信息:每个边包含了节点之间的连接关系或关联性。这些关系可以是有向的或无向的,可以是带权重的或不带权重的。比如,在社交网络中,节点可以表示人,边可以表示朋友关系,权重可以表示亲密程度。 3. 层次结构:数据集可能包含多个层次结构,即节点可以按照一定的层次结构进行组织和分组。比如,在一张包含人和城市的图中,可以将人节点按照所属城市进行分组,形成一个城市层次和一个人层次。 Hierarchical Graph Attention Network可以在这样的数据集上进行训练和预测。它通过层次结构和图注意力机制来捕捉节点之间的结构信息和特征关联。在训练过程中,网络会学习到不同层次和节点之间的重要性权重,从而在预测任务中能够更好地利用数据集中的信息。 这样,利用hierarchical-graph-attention-network-master项目,我们可以对给定的图数据集进行分层建模和预测,从而有效利用节点之间的结构和关联信息。
Graph Transformer和GAT(Graph Attention Network)之间的区别在于它们的设计和功能。Graph Transformer是一种带有图结构的Transformer,它通过使用图结构来处理输入数据中的关系信息。它基于Transformer模型,但改进了其注意力机制以适应图数据。Graph Transformer将Transformer中的自注意力机制扩展到图上的节点和边上,以充分利用图数据的结构信息。 GAT(Graph Attention Network)是一种基于注意力机制的图神经网络模型,它主要用于处理节点级别的图数据。GAT模型通过计算节点之间的注意力权重来学习节点表示,从而在图数据上进行节点分类或节点属性预测。与Graph Transformer不同,GAT侧重于节点级别的任务,而不是处理整个图结构。 因此,Graph Transformer和GAT在设计上有所不同,Graph Transformer更适用于处理带有图结构的输入数据,而GAT主要用于节点级别的图数据处理任务。123 #### 引用[.reference_title] - *1* *3* [【图-注意力笔记,篇章1】Graph Transformer:包括Graph Transformer 的了解与回顾且其与GNN、Transformer...](https://blog.csdn.net/qq_41895003/article/details/129218936)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [一份PPT快速了解Graph Transformer,包括其与GNN、Transformer的关联](https://blog.csdn.net/moxibingdao/article/details/129234145)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
在这里推荐几个比较流行的图神经网络模型的源码: 1. Graph Convolutional Network (GCN):https://github.com/tkipf/pygcn 2. Graph Attention Network (GAT):https://github.com/PetarV-/GAT 3. DeepWalk:https://github.com/phanein/deepwalk 4. Node2Vec:https://github.com/aditya-grover/node2vec 5. PageRank:https://github.com/dennybritz/pagerank-py 6. Spectral Clustering:https://github.com/lmcinnes/spectral_clustering 7. Structural Role Similarity:https://github.com/dorian3d/StructuralRoleSimilarity 8. GraphSAGE:https://github.com/williamleif/GraphSAGE 9. Random Walk with Restart (RWR):https://github.com/vahidk/RWR 10. Graph Isomorphism Network (GIN):https://github.com/weihua916/powerful-gnns 11. Graph Autoencoder:https://github.com/suanrong/GraphAutoEncoder 12. Large-scale Graph Convolutional Networks (GraphSAINT):https://github.com/PetarV-/GraphSAINT 13. Graph Neural Network (GNN) Explainer:https://github.com/jkuczm/gnn-explainer 14. Graph Convolutional Policy Network (GCPN):https://github.com/shenweichen/GCPN 15. Relational Graph Convolutional Network (RGCN):https://github.com/DeepGraphLearning/RecommenderSystems 16. Graph Neural Network (GNN) Benchmark:https://github.com/jwchen307/GNN-Benchmark 17. Graph Neural Tangent Kernel (GNTK):https://github.com/google/graph_neural_tangent_kernel 18. GraphWave:https://github.com/leoribeiro/graphwave 19. Graph Mixer:https://github.com/google-research/graph_mixer 20. Message Passing Neural Network (MPNN):https://github.com/deepmind/mpnn 希望这些源码能帮到你!
GNN(Graph Neural Network)模型是一种基于图结构的深度学习模型,主要用于图数据的处理和分析。常见的GNN模型有以下几种: 1. Graph Convolutional Network(GCN):将图中每个节点的特征向量与其邻居节点的特征向量进行卷积操作,来更新节点的特征向量。优点是能够有效地利用图结构信息,适用于节点分类和图分类任务,缺点是需要固定的图结构。 2. Graph Attention Network(GAT):利用注意力机制来计算每个节点与其邻居节点之间的权重,然后将这些权重作为卷积操作中的参数,来更新节点的特征向量。优点是能够自适应地学习不同节点之间的关系,适用于节点分类和图分类任务,缺点是计算复杂度较高。 3. GraphSAGE:利用多层卷积操作来更新节点的特征向量,每层卷积操作的输入是上一层节点的特征向量和邻居节点的特征向量。优点是具有较强的表达能力,适用于节点分类、图分类和链接预测等任务,缺点是需要选择合适的卷积操作类型和参数。 4. DeepWalk:将图中的节点视为文本中的单词,利用随机游走算法来生成节点序列,然后利用Word2Vec等模型来学习节点的特征向量。优点是计算复杂度较低,适用于节点分类和链接预测等任务,缺点是无法直接利用图结构信息。 5. Gated Graph Neural Network(GGNN):利用门控机制来控制每个节点的信息流动,从而更新节点的特征向量。优点是能够自适应地学习不同节点之间的关系,适用于节点分类和图分类任务,缺点是模型结构较为复杂。 不同的GNN模型适用的条件有所不同,一般来说,如果图结构比较固定,可以选择GCN或GraphSAGE等模型;如果需要自适应地学习节点之间的关系,可以选择GAT或GGNN等模型;如果计算资源比较有限,可以选择DeepWalk等模型。此外,还需要根据具体任务的特点来选择合适的模型。
GAT(Graph Attention Network)是一种基于图神经网络的模型,用于处理图数据。PyTorch是一种深度学习框架,用于构建、训练和部署神经网络模型。下面是关于GAT代码在PyTorch中的解释: 在PyTorch中实现GAT代码主要包括以下几个步骤: 1. 数据准备:首先,需要准备图数据的节点特征和边信息。节点特征可以是任意维度的向量,边信息可以是节点之间的连接关系。 2. 模型定义:接下来,需要定义GAT模型的网络结构。GAT模型主要由多个Graph Attention Layer组成,每个Attention Layer都有一个注意力权重计算机制,用于计算节点之间的注意力得分。在PyTorch中,可以使用torch.nn.Module类定义GAT模型,并在forward()方法中实现模型的前向传播计算。 3. 注意力计算:注意力机制是GAT模型的核心。在每个Attention Layer中,可以使用自定义函数或者使用PyTorch提供的函数,例如torch.nn.functional中的softmax()函数来计算节点之间的注意力得分。 4. 训练模型:定义好模型后,需要准备训练数据,并使用合适的优化器和损失函数对模型进行训练。在训练过程中,可以使用PyTorch提供的自动微分机制来计算梯度,并使用优化器来更新模型的参数。 5. 模型评估:训练完成后,可以使用测试数据对模型进行评估。可以计算模型的准确率、精确率、召回率等指标来评估模型的性能。 总结起来,GAT代码在PyTorch中主要包括数据准备、模型定义、注意力计算、训练模型和模型评估等步骤。通过使用PyTorch提供的函数和类,可以方便地实现GAT模型,并对图数据进行学习和预测。
GAT、GCN、GraphSAGE、APPNP和MLP都是图神经网络中常用的模型,它们都有各自的优缺点。 GAT(Graph Attention Network)是一种基于注意力机制的图神经网络模型,它通过学习每个节点之间的关系权重来进行图像分类和节点分类任务。与GCN相比,GAT能够更好地捕捉节点之间的关系,因为它可以对每个节点的邻居节点进行不同程度的加权。 GCN(Graph Convolutional Network)是一种基于卷积算法的图神经网络模型,它通过对节点的邻居节点进行卷积操作来进行图像分类和节点分类任务。与GAT相比,GCN的计算效率更高,但它不能够处理节点之间的不同关系权重。 GraphSAGE(Graph Sampling and Aggregation)是一种采样和聚合的图神经网络模型,它通过对每个节点的邻居节点进行采样和聚合来进行图像分类和节点分类任务。与GAT和GCN相比,GraphSAGE能够处理大型图像数据,并且具有更好的可扩展性。 APPNP(Approximate Personalized Propagation of Neural Predictions)是一种基于近似个性化传播算法的图神经网络模型,它通过学习每个节点的相似度来进行图像分类和节点分类任务。与GAT、GCN和GraphSAGE相比,APPNP能够处理更大的图像数据,并且具有更好的预测精度。 MLP(Multilayer Perceptron)是一种多层感知器模型,它通过多个全连接层来进行图像分类和节点分类任务。与其他图神经网络模型相比,MLP的计算效率更高,但它不能够处理图像数据中的复杂关系。 总之,不同的图神经网络模型都有各自的优缺点,选择适合任务的模型是非常重要的。

最新推荐

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

无监督人脸特征传输与检索

1检索样式:无监督人脸特征传输与检索闽金虫1号mchong6@illinois.edu朱文生wschu@google.comAbhishek Kumar2abhishk@google.com大卫·福赛斯1daf@illinois.edu1伊利诺伊大学香槟分校2谷歌研究源源源参考输出参考输出参考输出查询检索到的图像(a) 眼睛/鼻子/嘴(b)毛发转移(c)姿势转移(d)面部特征检索图1:我们提出了一种无监督的方法来将局部面部外观从真实参考图像转移到真实源图像,例如,(a)眼睛、鼻子和嘴。与最先进的[10]相比,我们的方法能够实现照片般逼真的传输。(b) 头发和(c)姿势,并且可以根据不同的面部特征自然地扩展用于(d)语义检索摘要我们提出检索风格(RIS),一个无监督的框架,面部特征转移和检索的真实图像。最近的工作显示了通过利用StyleGAN潜在空间的解纠缠特性来转移局部面部特征的能力。RIS在以下方面改进了现有技术:1)引入

HALCON打散连通域

### 回答1: 要打散连通域,可以使用 HALCON 中的 `connection` 和 `disassemble_region` 函数。首先,使用 `connection` 函数将图像中的连通域连接起来,然后使用 `disassemble_region` 函数将连接后的连通域分离成单独的区域。下面是一个示例代码: ``` read_image(Image, 'example.png') Threshold := 128 Binary := (Image > Threshold) ConnectedRegions := connection(Binary) NumRegions :=

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

无监督身份再识别中的判别表示学习算法及领域适应技术的研究与应用

8526基于判别表示学习的无监督身份再识别Takashi Isobe1,2,Dong Li1,Lu Tian1,Weihua Chen3,Yi Shan1,ShengjinWang2*1 Xilinx Inc.,中国北京2清华大学3阿里巴巴集团{dongl,lutian,yishan}@xilinx.comjbj18@mails.tsinghua.edu.cnwgsg@tsinghua.edu.cnkugang. alibaba-inc.com摘要在这项工作中,我们解决的问题,无监督域适应的人重新ID注释可用于源域,但不为目标。以前的方法通常遵循两阶段优化管道,其中网络首先在源上进行预训练,然后使用通过特征聚类创建的伪标签在目标上进行微调。这种方法存在两个主要局限性。(1)标签噪声可能阻碍用于识别目标类别的区分特征的学习。(2)领域差距可能会阻碍知识从源到目标的转移。我们提出了三种技术方案来缓解(一)(b)第(1)款(c)第(1)款这些问题首先,我们提出了一个集群明智的对比学习算法(CCL)的特征学习和集群精炼的迭代优�

开路电压、短路电流测等效内阻的缺点

### 回答1: 开路电压、短路电流测等效内阻的缺点有以下几个: 1. 受环境条件影响较大:开路电压、短路电流测等效内阻需要在特定的环境条件下进行,如温度、湿度等,如果环境条件发生变化,测量结果可能会出现较大误差。 2. 测量精度较低:开路电压、短路电流测等效内阻的精度受到仪器精度、线路接触不良等因素的影响,误差较大。 3. 需要断开电池电路:开路电压、短路电流测等效内阻需要断开电池电路进行测量,这样会导致电池的使用受到影响,对于某些需要连续供电的设备来说不太适用。 4. 无法检测内部故障:开路电压、短路电流测等效内阻只能检测电池整体的性能,无法检测到电池内部的故障,如单体电池损坏等问

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

无监督人员身份再识别中的Meta成对关系蒸馏方法

3661Meta成对关系蒸馏的无监督人员身份再识别浩轩叶季1王乐1 * 周三平1唐伟2南宁郑1刚华31西安交通大学人工智能与机器人研究所2美国伊利诺伊大学芝加哥分校摘要由于缺乏地面真实标签,无监督人员重新识别(Re-ID)仍然具有挑战性。现有方法通常依赖于经由迭代聚类和分类估计的伪标签,并且不幸的是,它们非常容易受到由不准确的估计的聚类数量引起的性能损失的影响另外,我们提出了Meta Pairwise RelationshipDistillation(MPRD)方法来估计无监督人Re-ID的样本对的伪标签。具体地,它由卷积神经网络(CNN)和图卷积网络(GCN)组成,其中GCN基于由CNN提取的当前特征来估计样本对的伪标签,并且CNN通过涉及由GCN施加的高保真正样本和负样本对来学习更好的为了实现这一目标,少量的标记样本用于指导GCN训练,它可以提取Meta知识来判断正负样本对之间的�

使用 easyx 绘制先序遍历的 C++ 代码,并在遍历时改变遍历的节点的颜色。

### 回答1: 以下是使用 easyx 绘制先序遍历并改变节点颜色的 C++ 代码: ```cpp #include <graphics.h> #include <conio.h> #include <iostream> #include <stack> using namespace std; const int MAXN = 105; // 最大节点数 const int nodeSize = 30; // 节点大小 const int interval = 50; // 节点间距 int n;

freescale IMX6 开发板原理图

freesacle 的arm cortex-a9的双核 四核管脚兼容CPU开发板原理图。