f1shift = np.fft.ifftshift(f_shift) img_back1 = np.fft.ifft2(f1shift) img_back = np.abs(img_back1)
时间: 2024-05-28 11:10:55 浏览: 136
这段代码是进行傅里叶逆变换,将经过傅里叶变换后的频域图像进行逆变换,转换回时域的图像。
首先,使用`np.fft.ifftshift()`函数对频域图像进行反移位操作,得到中心点位置正确的频域图像`f1shift`。
然后,使用`np.fft.ifft2()`函数对反移位后的频域图像进行逆变换,得到时域的图像`img_back1`。这里的`ifft2()`函数是二维的逆变换函数。
最后,使用`np.abs()`函数将得到的复数值图像转换成实数值图像`img_back`,并返回该图像。
需要注意的是,这里的逆变换结果是一个实数值的图像,因为在进行傅里叶变换时,原始图像是实数值,而虚部为0,因此其频域图像也是对称的,所以进行反移位和逆变换后得到的也是实数值的图像。
相关问题
给以下的代码加详细的中文注释#导入相关库 from skimage import data,color import numpy as np import matplotlib.pyplot as plt #中文显示工具函数 def set_ch(): from pylab import mpl mpl.rcParams['font.sans-serif'] = ['FangSong'] mpl.rcParams['axes.unicode_minus'] = False set_ch() D= 10 #读入图片 new_img = data.coffee() new_img = color.rgb2gray(new_img) #numpy中的傅里叶变化 f1 = np.fft.fft2(new_img) f1_shift = np.fft.fftshift(f1) #np.fft.fftshift()函数来实现平移,让直流分量在输出图像的重心 #实现理想低通滤波器 rows,cols = new_img.shape crow,ccol=int(rows/2),int(cols/2)#计算频谱中心 mask= np.zeros((rows,cols),np.uint8)#生成rows行cols的矩阵,数据格式为uint8 for i in range(rows): for j in range(cols): if np.sqrt(i*i+j*j)<=D: #将距离频谱中心小于D的部分低通信息,设置为1,属于低通滤波 mask[crow - D:crow + D, ccol - D:ccol + D] = 1 f1_shift = f1_shift*mask #傅里叶逆变换 f_ishift = np.fft.ifftshift(f1_shift) img_back=np.fft.ifft2(f_ishift) img_back=np.abs(img_back) img_back=(img_back-np.amin(img_back))/(np.amax(img_back)-np.amin(img_back)) #plt.figure(figsize=(15,8)) plt.figure() plt.subplot(121),plt.imshow(new_img,cmap='gray'),plt.title('原始图像') plt.subplot(122),plt.imshow(img_back,cmap='gray'),plt.title('滤波后图像') plt.show()
利用 Python 实现二分查找算法
def binary_search(arr, target):
"""
二分查找函数
参数:
arr: 有序数组(从小到大排列)
target: 目标元素
返回值:
如果找到目标元素,返回其下标;如果没找到,返回 -1。
"""
# 定义左右边界
left = 0
right = len(arr) - 1
# 当左边界小于等于右边界时,继续循环
while left <= right:
# 计算中间位置
mid = (left + right) // 2
# 如果目标元素在中间位置左边,缩小右边界
if arr[mid] > target:
right = mid - 1
# 如果目标元素在中间位置右边,扩大左边界
elif arr[mid] < target:
left = mid + 1
# 如果目标元素就是中间位置,直接返回下标
else:
return mid
# 如果左边界大于右边界,说明没找到,返回 -1
return -1
gray_fft = np.fft.fft2(gray) gray_fftshift = np.fft.fftshift(gray_fft) dst_fftshift = np.zeros_like(gray_fftshift) M, N = np.meshgrid(np.arange(-cols // 2, cols // 2), np.arange(-rows // 2, rows // 2)) D = np.sqrt(M ** 2 + N ** 2) Z = (rh - r1) * (1 - np.exp(-c * (D ** 2 / d0 ** 2))) + r1 dst_fftshift = Z * gray_fftshift dst_fftshift = (h - l) * dst_fftshift + l dst_ifftshift = np.fft.ifftshift(dst_fftshift) dst_ifft = np.fft.ifft2(dst_ifftshift) dst = np.real(dst_ifft) dst = np.uint8(np.clip(dst, 0, 255)) return dst
在这个函数中,首先使用np.fft.fft2函数将输入图像进行二维傅里叶变换,然后使用np.fft.fftshift函数将变换结果进行中心化处理。接下来,创建一个与输入图像大小相同的全零数组dst_fftshift,并计算出输入图像的行数和列数。
函数接着使用np.meshgrid函数生成网格坐标,并根据频率域滤波器的公式计算出增益系数Z。然后,将增益系数Z乘以中心化的傅里叶变换结果gray_fftshift,得到增益后的频率域图像dst_fftshift。
接着,将增益后的频率域图像dst_fftshift乘以(h - l),再加上l,得到最终的频率域图像。然后,使用np.fft.ifftshift函数将频率域图像逆中心化,并使用np.fft.ifft2函数将其转换回空间域。最后,将输出图像进行限幅处理,转换为8位无符号整数类型,然后返回输出图像。
阅读全文