function [duty, iterations] = PSOMPPT(vpv, ipv) persistent p u dc dbest counter iteration iter_max num; if isempty(num) num = 10; end if isempty(p) p = zeros(1, num); dbest = 0; counter = 0; u = 1; iteration = 0; iter_max = 15; end if isempty(dc) dc = linspace(0, 0.7, num); end iterations = iteration; if iterations <= iter_max if (counter >= 1 && counter <= 100) duty = dc(u); counter = counter + 1; return; end if (u >= 1 && u <= num) p(u) = vpv * ipv; end u = u + 1; if (u < num + 1) duty = dc(u); counter = 1; return; end u = 1; counter = 1; iteration = iteration + 1; w = 0.729; c1 = 1.494; c2 = 1.494; dim = num; swarm_size = 50; max_iter = 100; min_bound = zeros(1, dim); max_bound = ones(1, dim); x = repmat(min_bound, swarm_size, 1) + rand(swarm_size, dim) .* (repmat(max_bound, swarm_size, 1) - repmat(min_bound, swarm_size, 1)); v = rand(swarm_size, dim); pbest = x; for i = 1:swarm_size if p(i) > pbest(i) pbest(i) = p(i); end end [gbestval, gbestid] = max(pbest); gbest = repmat(min_bound, 1, dim) + rand(1, dim) .* (repmat(max_bound, 1, dim) - repmat(min_bound, 1, dim)); for iter = 1:max_iter for i = 1:swarm_size v(i, :) = w * v(i, :) + c1 * rand(1, dim) .* (pbest(i, :) - x(i, :)) + c2 * rand(1, dim) .* (gbest - x(i, :)); x(i, :) = x(i, :) + v(i, :); for j = 1:dim if x(i, j) > max_bound(j) x(i, j) = max_bound(j); elseif x(i, j) < min_bound(j) x(i, j) = min_bound(j); end end p(i) = vpv * ipv * x(i, u); if p(i) > pbest(i) pbest(i, :) = x(i, :); end end [cur_bestval, cur_bestid] = max(pbest); if cur_bestval > gbestval gbestval = cur_bestval; gbest = pbest(cur_bestid, :); end end dbest = gbest(u); dc1 = EPOUpdateDuty(dbest, dc, iteration, iter_max, num); dc = dc1; duty = dc(u); return; else duty = dbest; return; endendfunction D = EPOUpdateDuty(dbest, d, iter, iter_max, num) D = zeros(1, num); dup = zeros(1, num); persistent s; if isempty(s) s = 0.5; end res = 0.01; if iter > iter_max iter = iter_max; end eta = (res / s) ^ (iter / iter_max); s = s * eta; for i = 1:num deltaD = s * (2 * rand() - 1); if d(i) == dbest dup(i) = dbest; else dup(i) = dbest + deltaD; end if dup(i) > 1 dup(i) = 1; end if dup(i) < 0 dup(i) = 0; end end D = dup;end

时间: 2024-04-01 16:38:39 浏览: 92
在这段代码中,gbest = pbest(cur_bestid, :) 这一行代码出现了错误。这是因为 pbest(cur_bestid, :) 返回的是一个行向量,而 gbest 是一个行向量,所以两者无法匹配。可以尝试修改这一行代码为 gbest = pbest(cur_bestid, :); (去掉行尾的冒号)来解决问题。
相关问题

function [duty,iterations] = TSOMPPT(vpv,ipv) persistent p u dc dbest counter iteration iter_max num; if isempty(num) num=10; end if isempty(p) p=zeros(1,num); dbest=0; counter=0; u=1; iteration=0; iter_max=15; end if isempty(dc) dc=linspace(0,0.7,num); end iterations=iteration; if iterations<=iter_max if(counter>=1 && counter<=100) duty=dc(u); counter=counter+1; return; end if(u>=1 && u<=num) p(u)=vpv*ipv; end u=u+1; if(u<num+1) duty=dc(u); counter=1; return; end u=1; counter=1; iteration=iteration+1; [m,i]=max(p); dbest=dc(i); dc1=EPOUpdateDuty(dbest,dc,iteration,iter_max,num); dc=dc1; duty=dc(u); return; else duty=dbest; return; end end

这是一个 MATLAB 函数,名为 `TSOMPPT`,用于实现一种基于 OMP 算法的 MPPT (Maximum Power Point Tracking) 算法。该函数的输入参数为 `vpv` 和 `ipv`,分别表示光伏电池板的电压和电流。函数的输出参数为 `duty` 和 `iterations`,分别表示 PWM 的占空比和算法执行的迭代次数。 函数中使用了多个 `persistent` 变量,包括了 `p`、`u`、`dc`、`dbest`、`counter`、`iteration`、`iter_max` 和 `num`。`p` 是一个 1x10 的行向量,用于保存每个 `dc` 值对应的功率值。`u` 是一个整型变量,用于记录当前遍历到了 `p` 向量的哪一个元素。`dc` 是一个 1x10 的行向量,用于保存待遍历的 PWM 值。`dbest` 是一个实数型变量,表示最优的 PWM 值。`counter` 是一个整型变量,用于记录当前的迭代次数。`iteration` 是一个整型变量,用于记录算法执行的总迭代次数。`iter_max` 是一个整型常量,表示算法执行的最大迭代次数。`num` 是一个整型常量,表示 PWM 值的个数。 函数的执行过程分为两个阶段。在第一阶段中,函数会快速遍历 `dc` 向量的所有元素,以找到一个初始的 PWM 值。在第二阶段中,函数会在初始 PWM 值的基础上进行进一步优化,以找到更优的 PWM 值。 在第一阶段中,函数会先检查 `num` 变量是否已经被初始化,如果没有,则将其初始化为 10。然后,函数会检查 `p`、`dbest`、`counter`、`u`、`iteration` 和 `iter_max` 变量是否已经被初始化,如果没有,则将它们初始化为相应的值。最后,函数会检查 `dc` 向量是否已经被初始化,如果没有,则生成一个包含 10 个等间距数值的向量。 在第二阶段中,函数会根据当前的迭代次数 `iteration` 判断是否需要执行算法。如果当前的迭代次数小于等于最大迭代次数 `iter_max`,则执行算法。在这个阶段中,函数会先检查 `counter` 的值,如果在 1 到 100 的范围内,则返回当前的 PWM 值,并将 `counter` 的值加 1。如果 `counter` 的值大于 100,则将 `u` 的值加 1,表示遍历 `dc` 向量的下一个元素,并返回新的 PWM 值。当 `u` 的值遍历完所有的元素时,函数会调用 `EPOUpdateDuty` 函数更新 PWM 值,并将 `u` 和 `counter` 的值重置为 1,以进行下一次迭代。 在算法执行的过程中,函数会根据每个 PWM 值计算出相应的功率值,并将其保存在 `p` 向量中。当算法执行的迭代次数达到最大迭代次数时,函数会返回最优的 PWM 值 `dbest`。

function [duty,iterations] = ESOMPPT(vpv,ipv) persistent p u dc dbest counter iteration iter_max num; if isempty(num) num=10; end if isempty(p) p=zeros(1,num); dbest=0; counter=0; u=1; iteration=0; iter_max=15; end if isempty(dc) dc=linspace(0,0.7,num); end iterations=iteration; if iterations<=iter_max if(counter>=1 && counter<=100) duty=dc(u); counter=counter+1; return; end if(u>=1 && u<=num) p(u)=vpv*ipv; end u=u+1; if(u<num+1) duty=dc(u); counter=1; return; end u=1; counter=1; iteration=iteration+1; [m,i]=max(p); dbest=dc(i); dc1=EPOUpdateDuty(dbest,dc,iteration,iter_max,num); dc=dc1; duty=dc(u); return; else duty=dbest; return; end end function D=EPOUpdateDuty(dbest,d,iter,iter_max,num) D=zeros(1,num); dup=zeros(1,num); persistent s; if isempty(s) s=0.5; end res=0.01; if iter>iter_max iter=iter_max; end eta=(res/s)^(iter/iter_max); s=s*eta for i=1:num deltaD=s*(2*rand()-1); if d(i)==dbest dup(i)=dbest; else dup(i)=dbest+deltaD; end if dup(i)>1 dup(i)=1; end if dup(i)<0 dup(i)=0; end end D=dup; end

这段代码看起来像是用于控制某种电力系统的程序,其中包括输入电压和电流的变量vpv和ipv。函数ESOMPPT似乎是使用某种进化算法来优化占空比(duty cycle)的函数,其中包括一个循环来迭代计算,直到达到最大迭代次数为止。在每次迭代中,该算法会随机生成一组新的占空比值,并将最佳占空比值与当前占空比值进行比较。最终,该函数将返回最佳占空比值。
阅读全文

相关推荐

最新推荐

recommend-type

【中国房地产业协会-2024研报】2024年第三季度房地产开发企业信用状况报告.pdf

行业研究报告、行业调查报告、研报
recommend-type

【中国银行-2024研报】美国大选结果对我国芯片产业发展的影响和应对建议.pdf

行业研究报告、行业调查报告、研报
recommend-type

RM1135开卡工具B17A

RM1135开卡工具B17A
recommend-type

毕业设计&课设_宿舍管理系统:计算机毕业设计项目.zip

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
recommend-type

毕业设计&课设_画手交易管理系统:Java 毕设项目.zip

该资源内项目源码是个人的课程设计、毕业设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过严格测试运行成功才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。