这段代码中 p(i) = vpv(i) * ipv(i) / dc(i);这行代码出现报错,报错内容为索引超出数组维度。索引值 2 超出数组 'vpv' 的有效范围 [1-1]。请修改并给我一段正确的代码

时间: 2024-03-23 19:38:35 浏览: 89
RAR

ICEE-574.rar_matlab例程_MathCAD_

根据错误提示,可以看出 `vpv` 只有一个元素,而你在第 2 个元素上进行了索引,导致出现了错误。所以在这里需要进行检查 `vpv` 和 `ipv` 数组的维度,确保它们的维度是一致的。 下面给出修改后的代码: ```matlab function [duty,iterations] = PSOMPPT(vpv,ipv) % 初始化 persistent p dc dbest counter iteration iter_max num gbest gbest_idx particles velocity; if isempty(num) num=10; endif if isempty(p) p=zeros(1,num); dbest=0; counter=0; iteration=0; iter_max=15; gbest=0; gbest_idx=0; endif if isempty(dc) dc=linspace(0,0.7,num); endif if isempty(particles) particles = rand(num, 3); particles(:, 1) = particles(:, 1) .* (1 - 0) + 0; % 初始位置随机生成 particles(:, 2) = zeros(num, 1); % 初始速度为 0 particles(:, 3) = inf(num, 1); % 初始个体最佳适应度设为正无穷 endif if isempty(velocity) velocity = rand(num, 1); velocity = velocity .* (1 - 0) + 0; % 初始速度随机生成 endif % 计算适应度值 for i = 1:num p(i) = vpv(i) * ipv(i) / dc(i); if p(i) > gbest % 更新全局最优适应度 gbest = p(i); gbest_idx = i; end if p(i) < particles(i, 3) % 更新个体最优适应度 particles(i, 3) = p(i); particles(i, 1) = dc(i); end end % 更新速度和位置 for i = 1:num velocity(i) = velocity(i) + rand() * (particles(i, 1) - dc(i)) + rand() * (dc(gbest_idx) - dc(i)); dc(i) = dc(i) + velocity(i); if dc(i) > 1 % 约束条件 dc(i) = 1; end if dc(i) < 0 % 约束条件 dc(i) = 0; end end % 输出结果 duty = dc(1); counter = counter + 1; if counter > 100 % 重置控制周期 counter = 1; iteration = iteration + 1; end iterations = iteration; if iteration >= iter_max % 达到迭代次数上限 duty = dc(gbest_idx); return; end ``` 需要注意的是,这段代码需要传入两个数组 `vpv` 和 `ipv`,并且这两个数组的维度应该相同,否则也会出现类似的错误。
阅读全文

相关推荐

function [duty, iterations] = PSOMPPT(vpv, ipv) persistent p u dc dbest counter iteration iter_max num; if isempty(num) num = 10; end if isempty(p) p = zeros(1, num); dbest = 0; counter = 0; u = 1; iteration = 0; iter_max = 15; end if isempty(dc) dc = linspace(0, 0.7, num); end iterations = iteration; if iterations <= iter_max if (counter >= 1 && counter <= 100) duty = dc(u); counter = counter + 1; return; end if (u >= 1 && u <= num) p(u) = vpv * ipv; end u = u + 1; if (u < num + 1) duty = dc(u); counter = 1; return; end u = 1; counter = 1; iteration = iteration + 1; w = 0.729; c1 = 1.494; c2 = 1.494; dim = num; swarm_size = 50; max_iter = 100; min_bound = zeros(1, dim); max_bound = ones(1, dim); x = repmat(min_bound, swarm_size, 1) + rand(swarm_size, dim) .* (repmat(max_bound, swarm_size, 1) - repmat(min_bound, swarm_size, 1)); v = rand(swarm_size, dim); pbest = x; for i = 1:swarm_size if p(i) > pbest(i) pbest(i) = p(i); end end [gbestval, gbestid] = max(pbest); gbest = repmat(min_bound, 1, dim) + rand(1, dim) .* (repmat(max_bound, 1, dim) - repmat(min_bound, 1, dim)); for iter = 1:max_iter for i = 1:swarm_size v(i, :) = w * v(i, :) + c1 * rand(1, dim) .* (pbest(i, :) - x(i, :)) + c2 * rand(1, dim) .* (gbest - x(i, :)); x(i, :) = x(i, :) + v(i, :); for j = 1:dim if x(i, j) > max_bound(j) x(i, j) = max_bound(j); elseif x(i, j) < min_bound(j) x(i, j) = min_bound(j); end end p(i) = vpv * ipv * x(i, u); if p(i) > pbest(i) pbest(i, :) = x(i, :); end end [cur_bestval, cur_bestid] = max(pbest); if cur_bestval > gbestval gbestval = cur_bestval; gbest = pbest(cur_bestid, :); end end dbest = gbest(u); dc1 = EPOUpdateDuty(dbest, dc, iteration, iter_max, num); dc = dc1; duty = dc(u); return; else duty = dbest; return; endendfunction D = EPOUpdateDuty(dbest, d, iter, iter_max, num) D = zeros(1, num); dup = zeros(1, num); persistent s; if isempty(s) s = 0.5; end res = 0.01; if iter > iter_max iter = iter_max; end eta = (res / s) ^ (iter / iter_max); s = s * eta; for i = 1:num deltaD = s * (2 * rand() - 1); if d(i) == dbest dup(i) = dbest; else dup(i) = dbest + deltaD; end if dup(i) > 1 dup(i) = 1; end if dup(i) < 0 dup(i) = 0; end end D = dup;end

最新推荐

recommend-type

【中国房地产业协会-2024研报】2024年第三季度房地产开发企业信用状况报告.pdf

行业研究报告、行业调查报告、研报
recommend-type

【中国银行-2024研报】美国大选结果对我国芯片产业发展的影响和应对建议.pdf

行业研究报告、行业调查报告、研报
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自
recommend-type

如何在Springboot后端项目中实现前端的多人视频会议功能,并使用Vue.js与ElementUI进行界面开发?

要在Springboot后端项目中实现前端的多人视频会议功能,首先需要了解Springboot、WebRTC、Vue.js以及ElementUI的基本概念和用途。Springboot作为后端框架,负责处理业务逻辑和提供API接口;WebRTC技术则用于实现浏览器端的实时视频和音频通信;Vue.js作为一个轻量级的前端框架,用于构建用户界面;ElementUI提供了丰富的UI组件,可加速前端开发过程。 参考资源链接:[多人视频会议前端项目:Springboot与WebRTC的结合](https://wenku.csdn.net/doc/6jkpejn9x3?spm=1055.2569.3001