unet上采样拼接时为什么dim=1
时间: 2023-05-04 16:07:04 浏览: 290
UNet简介及应用.pdf
在UNet中,上采样操作是通过反卷积(transpose convolution)实现的,其中输入进来的特征图的shape为[batch_size, channels, height, width],而通过反卷积操作获得的特征图则变为了[batch_size, channels, height * 2, width * 2]。
因为UNet网络的设计,下采样时每次都会把channel数翻倍,所以上采样时需要进行特征图的拼接,将上采样后得到的特征图与之前下采样时保存的特征图逐一拼接。
在这个拼接过程中,我们需要将两个特征图在channel维度上进行拼接,这就涉及到了特征图的合并问题。根据Pytorch框架的设计,合并的函数是torch.cat,根据它的输入参数,我们可以发现,dim=1表示在channel维度上进行拼接。
总的来说,UNet上采样拼接时的dim=1是因为特征图的通道数是在1号维度上,通过在这个通道维度上进行拼接,可以实现特征的累积和拓展,从而提高模型的性能。
阅读全文