model_test1.eval()
时间: 2024-06-01 10:07:57 浏览: 80
`model_test1.eval()` 是在 PyTorch 中用来切换模型为评估模式的方法。在评估模式下,模型会停用一些训练中使用的技巧,如 Dropout 和 Batch Normalization,以及其他一些修改,以保证模型的输出更加稳定和可靠。这通常用于在测试集上验证模型的性能。在训练模式下,可以使用 `model_test1.train()` 方法来切换模型为训练模式。
相关问题
import torch import torch.nn as nn import pandas as pd from sklearn.model_selection import train_test_split # 加载数据集 data = pd.read_csv('../dataset/train_10000.csv') # 数据预处理 X = data.drop('target', axis=1).values y = data['target'].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) X_train = torch.from_numpy(X_train).float() X_test = torch.from_numpy(X_test).float() y_train = torch.from_numpy(y_train).float() y_test = torch.from_numpy(y_test).float() # 定义LSTM模型 class LSTMModel(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size): super(LSTMModel, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x): h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device) c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device) out, _ = self.lstm(x, (h0, c0)) out = self.fc(out[:, -1, :]) return out # 初始化模型和定义超参数 input_size = X_train.shape[1] hidden_size = 64 num_layers = 2 output_size = 1 model = LSTMModel(input_size, hidden_size, num_layers, output_size) criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 训练模型 num_epochs = 100 for epoch in range(num_epochs): model.train() outputs = model(X_train) loss = criterion(outputs, y_train) optimizer.zero_grad() loss.backward() optimizer.step() if (epoch+1) % 10 == 0: print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}') # 在测试集上评估模型 model.eval() with torch.no_grad(): outputs = model(X_test) loss = criterion(outputs, y_test) print(f'Test Loss: {loss.item():.4f}') 我有额外的数据集CSV,请帮我数据集和测试集分离
以下是将数据集和测试集分离的代码示例:
```python
import torch
import torch.nn as nn
import pandas as pd
from sklearn.model_selection import train_test_split
# 加载数据集
data = pd.read_csv('../dataset/train_10000.csv')
# 数据预处理
X = data.drop('target', axis=1).values
y = data['target'].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
X_train = torch.from_numpy(X_train).float()
X_test = torch.from_numpy(X_test).float()
y_train = torch.from_numpy(y_train).float()
y_test = torch.from_numpy(y_test).float()
```
以上代码中,我们使用了`sklearn`库的`train_test_split`函数将数据集分割成训练集和测试集。你可以根据需要调整`test_size`参数来确定测试集的比例。然后,我们将数据转换为`torch`张量以供模型使用。
希望这可以帮助到你!如果有任何其他问题,请随时问我。
下面这段代码用了哪种数学建模方法fold = 5 for model_seed in range(num_model_seed): print(seeds[model_seed],"--------------------------------------------------------------------------------------------") oof_cat = np.zeros(X_train.shape[0]) prediction_cat = np.zeros(X_test.shape[0]) skf = StratifiedKFold(n_splits=fold, random_state=seeds[model_seed], shuffle=True) for index, (train_index, test_index) in enumerate(skf.split(X_train, y)): train_x, test_x, train_y, test_y = X_train[feature_name].iloc[train_index], X_train[feature_name].iloc[test_index], y.iloc[train_index], y.iloc[test_index] dtrain = lgb.Dataset(train_x, label=train_y) dval = lgb.Dataset(test_x, label=test_y) lgb_model = lgb.train( parameters, dtrain, num_boost_round=10000, valid_sets=[dval], early_stopping_rounds=100, verbose_eval=100, ) oof_cat[test_index] += lgb_model.predict(test_x,num_iteration=lgb_model.best_iteration) prediction_cat += lgb_model.predict(X_test,num_iteration=lgb_model.best_iteration) / fold feat_imp_df['imp'] += lgb_model.feature_importance() del train_x del test_x del train_y del test_y del lgb_model oof += oof_cat / num_model_seed prediction += prediction_cat / num_model_seed gc.collect()
这段代码使用了交叉验证的方法(StratifiedKFold)来评估LightGBM模型的性能,并且使用了平均化的方法(num_model_seed)来减少模型的方差。其中,变量fold表示交叉验证折数,num_model_seed表示重复训练模型的次数。在每次交叉验证中,将训练数据(train_x)和测试数据(test_x)分别作为模型的训练集和验证集,使用LightGBM模型进行训练,并在验证集上进行早停策略(early_stopping_rounds),以避免模型过拟合。在训练过程中,记录并累加训练集和测试集的预测结果(oof_cat和prediction_cat),并计算特征重要性(feat_imp_df['imp'])。最后,使用平均化的方式计算oof和prediction,并释放不再使用的内存(gc.collect())。
阅读全文