def C_LSTM_model(input_size): model = Sequential() model.add(Conv1D(filters=64, kernel_size=3, activation='relu',input_shape=(input_size, 1))) model.add(MaxPooling1D(pool_size=2)) model.add(Dropout(0.5)) model.add(LSTM(32)) model.add(Dense(10, activation='relu')) model.add(Dense(1, activation='sigmoid')) return model代码讲解
时间: 2023-06-24 10:02:53 浏览: 64
这段代码定义了一个基于卷积神经网络和LSTM的分类模型。下面是代码的详细解释:
1. `Sequential()`:定义一个序列模型。
2. `Conv1D()`:添加一个1D卷积层,其中包含64个过滤器,每个过滤器的大小是3,激活函数为ReLU。输入形状是(input_size, 1),其中input_size是输入数据的长度。
3. `MaxPooling1D()`:添加一个最大池化层,池化窗口大小为2。
4. `Dropout()`:添加一个dropout层,dropout率为0.5。这可以避免过拟合。
5. `LSTM()`:添加一个LSTM层,其中有32个单元。
6. `Dense()`:添加一个全连接层,其中有10个节点,激活函数为ReLU。
7. `Dense()`:添加一个输出层,其中有1个节点,激活函数为sigmoid。这是一个二分类问题,因此输出节点只有一个。
8. 返回模型。
相关问题
def CNN_LSTM_model(input_size): model = Sequential() model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(input_size, 1))) model.add(Conv1D(filters=64, kernel_size=3, activation='relu')) model.add(MaxPooling1D(pool_size=2)) model.add(Dropout(0.5)) model.add(Conv1D(filters=128, kernel_size=3, activation='relu')) model.add(Conv1D(filters=128, kernel_size=3, activation='relu')) model.add(MaxPooling1D(pool_size=2)) model.add(Dropout(0.5)) model.add(Conv1D(filters=256, kernel_size=3, activation='relu')) model.add(Conv1D(filters=256, kernel_size=3, activation='relu')) model.add(MaxPooling1D(pool_size=2)) model.add(Dropout(0.5)) model.add(LSTM(64, return_sequences=True)) model.add(LSTM(32)) model.add(Dense(10, activation='relu')) model.add(Dense(1, activation='sigmoid')) return model改写成更适合5g异常流量数据分析的代码
可以考虑以下改进:
1. 修改模型输入形状,将原来的 `(input_size, 1)` 修改为 `(input_size, 3)`,表示每个时间步的输入特征包括当前时间步、前一时间步和后一时间步的流量数据。
2. 将最后一层的 `sigmoid` 激活函数改为 `softmax`,以便输出对不同类型异常流量的分类结果。
3. 修改模型输出层的神经元数量为 5,对应于可能的异常流量类型数目。
4. 修改损失函数为 `categorical_crossentropy`,适合多分类问题。
修改后的代码如下所示:
```
def CNN_LSTM_model(input_size):
model = Sequential()
model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(input_size, 3)))
model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.5))
model.add(Conv1D(filters=128, kernel_size=3, activation='relu'))
model.add(Conv1D(filters=128, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.5))
model.add(Conv1D(filters=256, kernel_size=3, activation='relu'))
model.add(Conv1D(filters=256, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.5))
model.add(LSTM(64, return_sequences=True))
model.add(LSTM(32))
model.add(Dense(10, activation='relu'))
model.add(Dense(5, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
```
帮我用pytorch改写:def make_generator_model(): model = tf.keras.Sequential() model.add(layers.Input(shape=(100, 12))) model.add(layers.Bidirectional(layers.LSTM(64, return_sequences=True))) model.add(layers.Conv1D(filters=128, kernel_size=16, strides=1, padding='same')) model.add(layers.LeakyReLU()) model.add(layers.Conv1D(filters=64, kernel_size=16, strides=1, padding='same')) model.add(layers.LeakyReLU()) model.add(layers.UpSampling1D(2)) model.add(layers.Conv1D(filters=32, kernel_size=16, strides=1, padding='same')) model.add(layers.LeakyReLU()) model.add(layers.Conv1D(filters=16, kernel_size=16, strides=1, padding='same')) model.add(layers.LeakyReLU()) model.add(layers.UpSampling1D(2)) model.add(layers.Conv1D(filters=1, kernel_size=16, strides=1, padding='same', activation='tanh')) model.add(layers.Permute((2, 1))) return model def make_discriminator_model(): model = tf.keras.Sequential() model.add(layers.Input(shape=(1, 400))) model.add(layers.Permute((2, 1))) model.add(layers.Conv1D(filters=32, kernel_size=16, strides=1, padding='same')) model.add(layers.LeakyReLU()) # model.add(layers.Dropout(0.4)) model.add(layers.Conv1D(filters=64, kernel_size=16, strides=1, padding='same')) model.add(layers.LeakyReLU()) model.add(layers.MaxPool1D(pool_size=2)) model.add(layers.Conv1D(filters=128, kernel_size=16, strides=1, padding='same')) model.add(layers.LeakyReLU()) # model.add(layers.Dropout(0.4)) model.add(layers.Conv1D(filters=256, kernel_size=16, strides=1, padding='same')) model.add(layers.LeakyReLU()) model.add(layers.MaxPool1D(pool_size=2)) model.add(layers.Flatten()) model.add(layers.Dense(1)) return model
以下是使用PyTorch重写的make_generator_model和make_discriminator_model函数:
```python
import torch.nn as nn
def make_generator_model():
model = nn.Sequential(
nn.LSTM(12, 64, bidirectional=True, batch_first=True),
nn.Conv1d(128, 128, kernel_size=16, stride=1, padding=8),
nn.LeakyReLU(),
nn.Conv1d(64, 64, kernel_size=16, stride=1, padding=8),
nn.LeakyReLU(),
nn.Upsample(scale_factor=2),
nn.Conv1d(32, 32, kernel_size=16, stride=1, padding=8),
nn.LeakyReLU(),
nn.Conv1d(16, 16, kernel_size=16, stride=1, padding=8),
nn.LeakyReLU(),
nn.Upsample(scale_factor=2),
nn.Conv1d(1, 1, kernel_size=16, stride=1, padding=8),
nn.Tanh(),
nn.Permute((0, 2, 1))
)
return model
def make_discriminator_model():
model = nn.Sequential(
nn.Conv1d(400, 32, kernel_size=16, stride=1, padding=8),
nn.LeakyReLU(),
nn.Conv1d(32, 64, kernel_size=16, stride=1, padding=8),
nn.LeakyReLU(),
nn.MaxPool1d(kernel_size=2),
nn.Conv1d(64, 128, kernel_size=16, stride=1, padding=8),
nn.LeakyReLU(),
nn.Conv1d(128, 256, kernel_size=16, stride=1, padding=8),
nn.LeakyReLU(),
nn.MaxPool1d(kernel_size=2),
nn.Flatten(),
nn.Linear(256 * 25, 1)
)
return model
```
请注意,这里使用了PyTorch中的模块替换了TensorFlow中的模块。在PyTorch中,nn.LSTM和nn.Conv1d的默认输入格式是(batch_size, seq_len, input_size)和(batch_size, input_channels, seq_len)。另外,使用nn.Linear替换了最后的全连接层。
阅读全文