self.dropout = nn.Dropout(p=dropout)
时间: 2023-09-11 12:10:43 浏览: 80
Tensorflow中的dropout的使用方法
self.dropout = nn.Dropout(p=dropout)是一个在神经网络中应用的技巧,用于防止过拟合。Dropout是指在训练过程中,随机将一些神经元的输出置为0,从而减少神经元之间的相互依赖。这样做的好处是可以防止神经网络过拟合,提高模型的泛化能力。
在这行代码中,nn.Dropout(p=dropout)创建了一个dropout层,其中p是丢弃概率,表示将神经元输出置为0的概率。self.dropout则是将这个dropout层保存在模型中,以便在模型的前向传播时使用。在模型的前向传播过程中,self.dropout会按照指定的丢弃概率随机将一些神经元的输出置为0,从而达到防止过拟合的效果。
阅读全文