解释下 self.dropout = nn.Dropout(p=0.5)
时间: 2023-04-07 13:02:44 浏览: 182
self.dropout = nn.Dropout(p=0.5) 是一个在神经网络中常用的技巧,用于防止过拟合。在训练神经网络时,模型可能会过度拟合训练数据,导致在测试数据上表现不佳。为了避免这种情况,可以在网络中添加 dropout 层,以一定的概率随机丢弃一些神经元的输出,从而减少神经元之间的依赖关系,使得模型更加鲁棒。在这里,p=0.5 表示每个神经元的输出有 50% 的概率被丢弃。
相关问题
self.fc1 = nn.Linear(20384, 128) self.fc2 = nn.Linear(128, 64) self.fc3 = nn.Linear(64, 10) self.relu = nn.ReLU() self.dropout = nn.Dropout(p=0.5)
这段代码定义了一个包含3个全连接层的神经网络模型,其中第一个全连接层的输入大小为20384,输出大小为128;第二个全连接层的输入大小为128,输出大小为64;第三个全连接层的输入大小为64,输出大小为10。在每个全连接层之间都使用了ReLU激活函数,同时在第一个和第二个全连接层之间使用了Dropout层(随机失活层),随机失活概率为0.5。
需要注意的是,这个模型定义之后还需要编译和训练才能使用。此外,在使用这个模型之前,还需要将输入数据变形为(batch_size, 20384)的形状。如果需要使用这个模型对形状为(batch_size, 1, input_length)的序列数据进行分类,需要在模型之前添加卷积层和池化层来提取特征,并将提取的特征展平后输入到全连接层中。
if self.liu: self.dropout = nn.Dropout(0.5) self.branch2 = nn.Linear(512 * block.expansion, 256) self.classifier1 = nn.Linear(512 * block.expansion+256, self.num_classes) self.classifier2 = nn.Linear(256, 3) elif self.chen: self.dropout = nn.Dropout(0.5) self.fc_out = nn.Linear(512 * block.expansion, 1024) self.classifier1_1 = nn.Linear(1024, 256) self.classifier1_2 = nn.Linear(256, 128) self.classifier1_3 = nn.Linear(128, self.num_classes) self.classifier2_1 = nn.Linear(1024, 256) self.classifier2_2 = nn.Linear(256, 128) self.classifier2_3 = nn.Linear(128, 3)
这段代码是什么意思?
这段代码是一个类中的初始化方法,其中包含了两个条件判断。如果 self.liu 的值为 True,就会执行第一个条件判断下面的代码块,其中定义了一个丢弃层、一个全连接层和两个分类器。这些层用于将输入的特征图进行分类,其中丢弃层用于防止过拟合。如果 self.chen 的值为 True,就会执行第二个条件判断下面的代码块,其中定义了一个丢弃层、一个全连接层和六个分类器。这些层同样用于将输入的特征图进行分类,其中全连接层用于将特征图进行压缩,分类器用于进行分类。这里的self.num_classes表示分类的类别数。
阅读全文