flownet中correlation代码
时间: 2024-01-03 09:02:50 浏览: 81
以下是Flownet中的correlation代码示例:
```python
from torch.nn.functional import unfold
def correlation(input1, input2, kernel_size=1, max_displacement=1, stride1=1, stride2=1, padding=0, dilation=1):
b, c, h, w = input1.size()
# Pad input2
padded_input2 = F.pad(input2, (padding, padding, padding, padding))
# Unfold input2
unfolded_input2 = unfold(padded_input2, kernel_size=kernel_size, dilation=dilation, stride=stride2)
# Reshape unfolded input2
unfolded_input2 = unfolded_input2.view(b, c, kernel_size**2, h, w)
# Create empty output tensor
output = torch.zeros(b, (2 * max_displacement + 1) ** 2, h // stride1, w // stride1).to(input1.device)
# Loop over displacements
for i in range(-max_displacement, max_displacement + 1):
for j in range(-max_displacement, max_displacement + 1):
# Shift input2
shifted_input2 = padded_input2[:, :, padding + i:h + padding + i, padding + j:w + padding + j]
# Unfold shifted input2
unfolded_shifted_input2 = unfold(shifted_input2, kernel_size=kernel_size, dilation=dilation, stride=stride2)
# Reshape unfolded shifted input2
unfolded_shifted_input2 = unfolded_shifted_input2.view(b, c, kernel_size**2, h, w)
# Compute correlation
corr = (input1 * unfolded_shifted_input2).sum(dim=1)
# Add to output tensor
output[:, (i + max_displacement) * (2 * max_displacement + 1) + j + max_displacement, :, :] = corr
return output
```
这段代码实现了correlation操作,它是Flownet中的关键操作之一。在此操作中,两个输入张量被移位并相乘,然后求和以计算它们之间的相似性。这个操作在光流估计中非常有用,因为它可以帮助找到两个图像中的相同区域。
阅读全文