class NeuralNetwork: def __init__(self, layers_strcuture, print_cost = False): self.layers_strcuture = layers_strcuture self.layers_num = len(layers_strcuture) self.param_layers_num = self.layers_num - 1 self.learning_rate = 0.0618 self.num_iterations = 2000 self.x = None self.y = None self.w = dict() self.b = dict() self.costs = [] self.print_cost = print_cost self.init_w_and_b() def set_learning_rate(self,learning_rate): self.learning_rate=learning_rate def set_num_iterations(self, num_iterations): self.num_iterations = num_iterations def set_xy(self, input, expected_output): self.x = input self.y = expected_output
时间: 2024-04-26 19:21:42 浏览: 176
这段代码定义了一个名为NeuralNetwork的类,包含了类的构造函数__init__()和一些其他的方法。该类的构造函数__init__()接受一个参数layers_structure,表示神经网络的结构,即每一层的神经元数量。该类还包含了一些其他的属性和方法,包括:
- layers_num: 表示神经网络的层数
- param_layers_num: 表示神经网络的参数层数,即除去输入层和输出层的层数
- learning_rate: 表示神经网络的学习率
- num_iterations: 表示神经网络的迭代次数
- x: 表示输入数据
- y: 表示期望输出数据
- w: 表示神经网络的权重参数
- b: 表示神经网络的偏置参数
- costs: 表示每次迭代的损失值
- print_cost: 表示是否打印每次迭代的损失值
该类还包含了一些其他方法,包括set_learning_rate()、set_num_iterations()和set_xy()等,用于设置神经网络的学习率、迭代次数和输入数据等。这些方法可以在实例化该类后进行调用。
相关问题
import pandas as pd import warnings import sklearn.datasets import sklearn.linear_model import matplotlib import matplotlib.font_manager as fm import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = pd.read_excel(r'C:\Users\Lenovo\Desktop\data.xlsx') print(data.info()) fig = plt.figure(figsize=(10, 8)) sns.heatmap(data.corr(), cmap="YlGnBu", annot=True) plt.title('相关性分析热力图') plt.rcParams['axes.unicode_minus'] = False plt.rcParams['font.sans-serif'] = 'SimHei' plt.show() y = data['y'] x = data.drop(['y'], axis=1) print('************************输出新的特征集数据***************************') print(x.head()) from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42) def relu(x): output=np.maximum(0, x) return output def relu_back_propagation(derror_wrt_output,x): derror_wrt_dinputs = np.array(derror_wrt_output, copy=True) derror_wrt_dinputs[x <= 0] = 0 return derror_wrt_dinputs def activated(activation_choose,x): if activation_choose == 'relu': return relu(x) def activated_back_propagation(activation_choose, derror_wrt_output, output): if activation_choose == 'relu': return relu_back_propagation(derror_wrt_output, output) class NeuralNetwork: def __init__(self, layers_strcuture, print_cost = False): self.layers_strcuture = layers_strcuture self.layers_num = len(layers_strcuture) self.param_layers_num = self.layers_num - 1 self.learning_rate = 0.0618 self.num_iterations = 2000 self.x = None self.y = None self.w = dict() self.b = dict() self.costs = [] self.print_cost = print_cost self.init_w_and_b() def set_learning_rate(self,learning_rate): self.learning_rate=learning_rate def set_num_iterations(self, num_iterations): self.num_iterations = num_iterations def set_xy(self, input, expected_output): self.x = input self.y = expected_output
这段代码存在两个问题:
1. 在import语句中没有使用逗号分隔符,应该在每个import语句之间添加逗号分隔符。
2. 在函数set_xy()的定义中,函数体没有缩进,应该在函数体内部添加缩进。
以下是修改后的代码:
```python
import pandas as pd, warnings
import sklearn.datasets, sklearn.linear_model
import matplotlib, matplotlib.font_manager as fm
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
data = pd.read_excel(r'C:\Users\Lenovo\Desktop\data.xlsx')
print(data.info())
fig = plt.figure(figsize=(10, 8))
sns.heatmap(data.corr(), cmap="YlGnBu", annot=True)
plt.title('相关性分析热力图')
plt.rcParams['axes.unicode_minus'] = False
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.show()
y = data['y']
x = data.drop(['y'], axis=1)
print('************************输出新的特征集数据***************************')
print(x.head())
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
def relu(x):
output=np.maximum(0, x)
return output
def relu_back_propagation(derror_wrt_output,x):
derror_wrt_dinputs = np.array(derror_wrt_output, copy=True)
derror_wrt_dinputs[x <= 0] = 0
return derror_wrt_dinputs
def activated(activation_choose,x):
if activation_choose == 'relu':
return relu(x)
def activated_back_propagation(activation_choose, derror_wrt_output, output):
if activation_choose == 'relu':
return relu_back_propagation(derror_wrt_output, output)
class NeuralNetwork:
def __init__(self, layers_strcuture, print_cost = False):
self.layers_strcuture = layers_strcuture
self.layers_num = len(layers_strcuture)
self.param_layers_num = self.layers_num - 1
self.learning_rate = 0.0618
self.num_iterations = 2000
self.x = None
self.y = None
self.w = dict()
self.b = dict()
self.costs = []
self.print_cost = print_cost
self.init_w_and_b()
def set_learning_rate(self,learning_rate):
self.learning_rate=learning_rate
def set_num_iterations(self, num_iterations):
self.num_iterations = num_iterations
def set_xy(self, input, expected_output):
self.x = input
self.y = expected_output
```
为以下代码添加注释class NeuralNetwork(nn.Module): def __init__(self): super().__init__() self.flatten = nn.Flatten() self.linear_relu_stack = nn.Sequential( # 建立多层神经网络 nn.Linear(28*28, 512), nn.ReLU(), nn.Linear(512, 512), nn.ReLU(), nn.Linear(512, 10) ) def forward(self, x): x = self.flatten(x) logits = self.linear_relu_stack(x) return logits model = NeuralNetwork().to(device) print(model)
# 定义一个神经网络类
class NeuralNetwork(nn.Module):
def __init__(self):
super().__init__() # 调用父类的构造函数
self.flatten = nn.Flatten() # 将输入的二维图像数据展平为一维数据
self.linear_relu_stack = nn.Sequential( # 定义一个多层神经网络,包含三个全连接层和两个ReLU激活函数
nn.Linear(28*28, 512), # 第一层全连接层,输入维度为28*28,输出维度为512
nn.ReLU(), # 第一个ReLU激活函数
nn.Linear(512, 512), # 第二层全连接层,输入维度为512,输出维度为512
nn.ReLU(), # 第二个ReLU激活函数
nn.Linear(512, 10) # 最后一层全连接层,输入维度为512,输出维度为10(对应10个分类)
)
# 定义前向传播函数
def forward(self, x):
x = self.flatten(x) # 将输入数据展平为一维数据
logits = self.linear_relu_stack(x) # 输入数据通过多层神经网络,得到输出结果
return logits
# 创建一个神经网络实例,并将其移动到指定设备上(如果有GPU,则移动到GPU上)
model = NeuralNetwork().to(device)
# 打印神经网络结构
print(model)
阅读全文