请使用python语言写一个使用LSTM神经网络进行混凝土强度预测的代码,要求输出预测图,求得平均绝对误差、平均绝对百分误差和均方根误差等评价指标。

时间: 2024-03-05 08:49:12 浏览: 133
好的,以下是一个使用 LSTM 神经网络进行混凝土强度预测的 Python 代码示例(使用 Keras 库): ```python import numpy as np import pandas as pd from keras.models import Sequential from keras.layers import Dense, LSTM from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_absolute_error, mean_absolute_percentage_error, mean_squared_error import matplotlib.pyplot as plt # 读取数据 data = pd.read_csv('concrete_data.csv') data = data.dropna() # 去除缺失值 # 特征和标签 X = data.iloc[:, :-1] y = data.iloc[:, -1] # 归一化 scaler = MinMaxScaler(feature_range=(0, 1)) X = scaler.fit_transform(X) y = scaler.fit_transform(y.values.reshape(-1, 1)) # 划分数据集 train_size = int(len(data) * 0.8) X_train = X[:train_size, :] X_test = X[train_size:, :] y_train = y[:train_size, :] y_test = y[train_size:, :] # 转换为三维数据 X_train = np.reshape(X_train, (X_train.shape[0], 1, X_train.shape[1])) X_test = np.reshape(X_test, (X_test.shape[0], 1, X_test.shape[1])) # LSTM 模型 model = Sequential() model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], X_train.shape[2]))) model.add(LSTM(units=50)) model.add(Dense(units=1)) model.compile(loss='mean_squared_error', optimizer='adam') # 训练模型 history = model.fit(X_train, y_train, epochs=100, batch_size=64, validation_data=(X_test, y_test), verbose=2, shuffle=False) # 预测 y_train_pred = model.predict(X_train) y_test_pred = model.predict(X_test) y_train_pred = scaler.inverse_transform(y_train_pred) y_test_pred = scaler.inverse_transform(y_test_pred) y_train = scaler.inverse_transform(y_train) y_test = scaler.inverse_transform(y_test) # 评价指标 mae_train = mean_absolute_error(y_train, y_train_pred) mape_train = mean_absolute_percentage_error(y_train, y_train_pred) mse_train = mean_squared_error(y_train, y_train_pred) rmse_train = np.sqrt(mse_train) mae_test = mean_absolute_error(y_test, y_test_pred) mape_test = mean_absolute_percentage_error(y_test, y_test_pred) mse_test = mean_squared_error(y_test, y_test_pred) rmse_test = np.sqrt(mse_test) print('训练集上的 MAE: %.2f' % mae_train) print('训练集上的 MAPE: %.2f' % mape_train) print('训练集上的 RMSE: %.2f' % rmse_train) print('测试集上的 MAE: %.2f' % mae_test) print('测试集上的 MAPE: %.2f' % mape_test) print('测试集上的 RMSE: %.2f' % rmse_test) # 绘制预测图 plt.plot(y_test, label='True') plt.plot(y_test_pred, label='Predicted') plt.legend() plt.show() ``` 其中,`concrete_data.csv` 是包含混凝土强度数据的 CSV 文件,需要根据实际情况进行修改。在代码中使用了 LSTM 神经网络进行预测,并使用了 MinMaxScaler 进行数据归一化。最后计算了训练集和测试集上的 MAE、MAPE、RMSE 等评价指标,并绘制了预测图。
阅读全文

相关推荐

最新推荐

recommend-type

Python中利用LSTM模型进行时间序列预测分析的实现

长短期记忆网络(LSTM)作为一种递归神经网络(RNN)的变种,特别适合处理这类数据,因为它能够捕捉序列中的长期依赖关系。 时间序列预测是基于历史数据对未来事件的特征进行预测。在时间序列模型中,每个观测值...
recommend-type

pytorch下使用LSTM神经网络写诗实例

在本文中,我们将探讨如何使用PyTorch实现一个基于LSTM(Long Short-Term Memory)神经网络的诗歌生成系统。LSTM是一种递归神经网络(RNN)变体,特别适合处理序列数据,如文本,因为它能有效地捕获长期依赖性。 ...
recommend-type

用Python的长短期记忆神经网络进行时间序列预测

在本文中,我们将深入探讨如何使用Python中的长短期记忆(LSTM)神经网络进行时间序列预测。LSTM是一种特殊的递归神经网络(RNN),它特别适合处理具有长期依赖性的序列数据,如时间序列预测问题。 首先,我们需要...
recommend-type

基于LSTM循环神经网络的故障时间序列预测_王鑫.pdf

标题中的“基于LSTM循环神经网络的故障时间序列预测”是指利用长短期记忆(LSTM)网络,一种深度学习中的特殊类型循环神经网络(RNN),来预测复杂系统的故障发生时间。这种预测方法主要适用于处理时间序列数据,...
recommend-type

详解用Python进行时间序列预测的7种方法

Python 提供了多种库和方法来进行时间序列预测,本篇将介绍七种使用 Python 进行时间序列预测的方法,以帮助你理解和应用到实际工作中。 1. **朴素法**: 朴素法是最简单的预测方法,它假设未来的值与最近的已知值...
recommend-type

易语言例程:用易核心支持库打造功能丰富的IE浏览框

资源摘要信息:"易语言-易核心支持库实现功能完善的IE浏览框" 易语言是一种简单易学的编程语言,主要面向中文用户。它提供了大量的库和组件,使得开发者能够快速开发各种应用程序。在易语言中,通过调用易核心支持库,可以实现功能完善的IE浏览框。IE浏览框,顾名思义,就是能够在一个应用程序窗口内嵌入一个Internet Explorer浏览器控件,从而实现网页浏览的功能。 易核心支持库是易语言中的一个重要组件,它提供了对IE浏览器核心的调用接口,使得开发者能够在易语言环境下使用IE浏览器的功能。通过这种方式,开发者可以创建一个具有完整功能的IE浏览器实例,它不仅能够显示网页,还能够支持各种浏览器操作,如前进、后退、刷新、停止等,并且还能够响应各种事件,如页面加载完成、链接点击等。 在易语言中实现IE浏览框,通常需要以下几个步骤: 1. 引入易核心支持库:首先需要在易语言的开发环境中引入易核心支持库,这样才能在程序中使用库提供的功能。 2. 创建浏览器控件:使用易核心支持库提供的API,创建一个浏览器控件实例。在这个过程中,可以设置控件的初始大小、位置等属性。 3. 加载网页:将浏览器控件与一个网页地址关联起来,即可在控件中加载显示网页内容。 4. 控制浏览器行为:通过易核心支持库提供的接口,可以控制浏览器的行为,如前进、后退、刷新页面等。同时,也可以响应浏览器事件,实现自定义的交互逻辑。 5. 调试和优化:在开发完成后,需要对IE浏览框进行调试,确保其在不同的操作和网页内容下均能够正常工作。对于性能和兼容性的问题需要进行相应的优化处理。 易语言的易核心支持库使得在易语言环境下实现IE浏览框变得非常方便,它极大地降低了开发难度,并且提高了开发效率。由于易语言的易用性,即使是初学者也能够在短时间内学会如何创建和操作IE浏览框,实现网页浏览的功能。 需要注意的是,由于IE浏览器已经逐渐被微软边缘浏览器(Microsoft Edge)所替代,使用IE核心的技术未来可能面临兼容性和安全性的挑战。因此,在实际开发中,开发者应考虑到这一点,并根据需求选择合适的浏览器控件实现技术。 此外,易语言虽然简化了编程过程,但其在功能上可能不如主流的编程语言(如C++, Java等)强大,且社区和技术支持相比其他语言可能较为有限,这些都是在选择易语言作为开发工具时需要考虑的因素。 文件名列表中的“IE类”可能是指包含实现IE浏览框功能的类库或者示例代码。在易语言中,类库是一组封装好的代码模块,其中包含了各种功能的实现。通过在易语言项目中引用这些类库,开发者可以简化开发过程,快速实现特定功能。而示例代码则为开发者提供了具体的实现参考,帮助理解和学习如何使用易核心支持库来创建IE浏览框。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)

![STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)](https://tapit.vn/wp-content/uploads/2019/01/cubemx-peripheral-1024x545.png) # 摘要 本文全面介绍了STM32F407ZG微控制器的引脚特性、功能、配置和应用。首先概述了该芯片的引脚布局,然后详细探讨了标准外设、高级控制以及特殊功能引脚的不同配置和使用方法。在此基础上,文章深入分析了引脚模式配置、高级配置技巧,并提供了实际应用案例,如LED控制和串口通信。在设计方面,阐述了引脚布局策略、多层板设计及高密度引脚应用的解决方案。最后,介绍
recommend-type

给出文档中问题的答案代码

您提到的是需要编写MATLAB代码来实现文档中的实验任务。以下是根据文档内容编写的MATLAB代码示例: ```matlab % 上机2 实验代码 % 读取输入图像 inputImage = imread('your_face_image.jpg'); % 替换为您的图像文件路径 if size(inputImage, 1) < 1024 || size(inputImage, 2) < 1024 error('图像尺寸必须大于1024x1024'); end % 将彩色图像转换为灰度图像 grayImage = rgb2gray(inputImage); % 调整图像大小为5
recommend-type

Docker构建与运行Next.js应用的指南

资源摘要信息:"rivoltafilippo-next-main" 在探讨“rivoltafilippo-next-main”这一资源时,首先要从标题“rivoltafilippo-next”入手。这个标题可能是某一项目、代码库或应用的命名,结合描述中提到的Docker构建和运行命令,我们可以推断这是一个基于Docker的Node.js应用,特别是使用了Next.js框架的项目。Next.js是一个流行的React框架,用于服务器端渲染和静态网站生成。 描述部分提供了构建和运行基于Docker的Next.js应用的具体命令: 1. `docker build`命令用于创建一个新的Docker镜像。在构建镜像的过程中,开发者可以定义Dockerfile文件,该文件是一个文本文件,包含了创建Docker镜像所需的指令集。通过使用`-t`参数,用户可以为生成的镜像指定一个标签,这里的标签是`my-next-js-app`,意味着构建的镜像将被标记为`my-next-js-app`,方便后续的识别和引用。 2. `docker run`命令则用于运行一个Docker容器,即基于镜像启动一个实例。在这个命令中,`-p 3000:3000`参数指示Docker将容器内的3000端口映射到宿主机的3000端口,这样做通常是为了让宿主机能够访问容器内运行的应用。`my-next-js-app`是容器运行时使用的镜像名称,这个名称应该与构建时指定的标签一致。 最后,我们注意到资源包含了“TypeScript”这一标签,这表明项目可能使用了TypeScript语言。TypeScript是JavaScript的一个超集,它添加了静态类型定义的特性,能够帮助开发者更容易地维护和扩展代码,尤其是在大型项目中。 结合资源名称“rivoltafilippo-next-main”,我们可以推测这是项目的主目录或主仓库。通常情况下,开发者会将项目的源代码、配置文件、构建脚本等放在一个主要的目录中,这个目录通常命名为“main”或“src”等,以便于管理和维护。 综上所述,我们可以总结出以下几个重要的知识点: - Docker容器和镜像的概念以及它们之间的关系:Docker镜像是静态的只读模板,而Docker容器是从镜像实例化的动态运行环境。 - `docker build`命令的使用方法和作用:这个命令用于创建新的Docker镜像,通常需要一个Dockerfile来指定构建的指令和环境。 - `docker run`命令的使用方法和作用:该命令用于根据镜像启动一个或多个容器实例,并可指定端口映射等运行参数。 - Next.js框架的特点:Next.js是一个支持服务器端渲染和静态网站生成的React框架,适合构建现代的Web应用。 - TypeScript的作用和优势:TypeScript是JavaScript的一个超集,它提供了静态类型检查等特性,有助于提高代码质量和可维护性。 - 项目资源命名习惯:通常项目会有一个主目录,用来存放项目的源代码和核心配置文件,以便于项目的版本控制和团队协作。 以上内容基于给定的信息进行了深入的分析,为理解该项目的构建、运行方式以及技术栈提供了基础。在实际开发中,开发者应当参考更详细的文档和指南,以更高效地管理和部署基于Docker和TypeScript的Next.js项目。