请使用python语言写一个使用LSTM神经网络进行混凝土强度预测的代码,要求输出预测图,求得平均绝对误差、平均绝对百分误差和均方根误差等评价指标。
时间: 2024-03-05 08:49:12 浏览: 133
好的,以下是一个使用 LSTM 神经网络进行混凝土强度预测的 Python 代码示例(使用 Keras 库):
```python
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense, LSTM
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_absolute_error, mean_absolute_percentage_error, mean_squared_error
import matplotlib.pyplot as plt
# 读取数据
data = pd.read_csv('concrete_data.csv')
data = data.dropna() # 去除缺失值
# 特征和标签
X = data.iloc[:, :-1]
y = data.iloc[:, -1]
# 归一化
scaler = MinMaxScaler(feature_range=(0, 1))
X = scaler.fit_transform(X)
y = scaler.fit_transform(y.values.reshape(-1, 1))
# 划分数据集
train_size = int(len(data) * 0.8)
X_train = X[:train_size, :]
X_test = X[train_size:, :]
y_train = y[:train_size, :]
y_test = y[train_size:, :]
# 转换为三维数据
X_train = np.reshape(X_train, (X_train.shape[0], 1, X_train.shape[1]))
X_test = np.reshape(X_test, (X_test.shape[0], 1, X_test.shape[1]))
# LSTM 模型
model = Sequential()
model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], X_train.shape[2])))
model.add(LSTM(units=50))
model.add(Dense(units=1))
model.compile(loss='mean_squared_error', optimizer='adam')
# 训练模型
history = model.fit(X_train, y_train, epochs=100, batch_size=64, validation_data=(X_test, y_test), verbose=2, shuffle=False)
# 预测
y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)
y_train_pred = scaler.inverse_transform(y_train_pred)
y_test_pred = scaler.inverse_transform(y_test_pred)
y_train = scaler.inverse_transform(y_train)
y_test = scaler.inverse_transform(y_test)
# 评价指标
mae_train = mean_absolute_error(y_train, y_train_pred)
mape_train = mean_absolute_percentage_error(y_train, y_train_pred)
mse_train = mean_squared_error(y_train, y_train_pred)
rmse_train = np.sqrt(mse_train)
mae_test = mean_absolute_error(y_test, y_test_pred)
mape_test = mean_absolute_percentage_error(y_test, y_test_pred)
mse_test = mean_squared_error(y_test, y_test_pred)
rmse_test = np.sqrt(mse_test)
print('训练集上的 MAE: %.2f' % mae_train)
print('训练集上的 MAPE: %.2f' % mape_train)
print('训练集上的 RMSE: %.2f' % rmse_train)
print('测试集上的 MAE: %.2f' % mae_test)
print('测试集上的 MAPE: %.2f' % mape_test)
print('测试集上的 RMSE: %.2f' % rmse_test)
# 绘制预测图
plt.plot(y_test, label='True')
plt.plot(y_test_pred, label='Predicted')
plt.legend()
plt.show()
```
其中,`concrete_data.csv` 是包含混凝土强度数据的 CSV 文件,需要根据实际情况进行修改。在代码中使用了 LSTM 神经网络进行预测,并使用了 MinMaxScaler 进行数据归一化。最后计算了训练集和测试集上的 MAE、MAPE、RMSE 等评价指标,并绘制了预测图。
阅读全文