webots ,python,nao机器人A*算法自主避障代码
时间: 2024-01-08 14:15:42 浏览: 112
以下是一个基于Webots和Python的NAO机器人A*算法自主避障代码示例:
```python
import numpy as np
import math
import time
from controller import Robot
from controller import DistanceSensor
from controller import Motor
from controller import Camera
from controller import GPS
# 创建机器人对象
robot = Robot()
# 获取设备对象
leftMotor = robot.getDevice("left wheel motor")
rightMotor = robot.getDevice("right wheel motor")
distanceSensor = robot.getDevice("distance sensor")
camera = robot.getDevice("camera")
gps = robot.getDevice("gps")
# 配置设备
leftMotor.setPosition(float('inf'))
rightMotor.setPosition(float('inf'))
distanceSensor.enable(10)
camera.enable(10)
gps.enable(10)
# 定义常量
MAX_SPEED = 6.28
WHEEL_RADIUS = 0.028
WHEEL_DISTANCE = 0.145
# 定义变量
robot_pose = gps.getValues()
target_pose = np.array([7.0, 0.0])
current_path = []
current_index = 0
# 定义函数
def calc_distance(point1, point2):
return math.sqrt((point1[0] - point2[0]) ** 2 + (point1[1] - point2[1]) ** 2)
def a_star(start, end, obstacles):
open_list = []
closed_list = []
came_from = {}
g_score = {start:0}
f_score = {start:calc_distance(start, end)}
open_list.append(start)
while len(open_list) > 0:
current = min(f_score, key=f_score.get)
if current == end:
path = []
while current in came_from:
path.append(current)
current = came_from[current]
path.append(start)
path.reverse()
return path
open_list.remove(current)
closed_list.append(current)
for neighbor in [(current[0]+1, current[1]), (current[0]-1, current[1]), (current[0], current[1]+1), (current[0], current[1]-1)]:
if neighbor in obstacles or neighbor in closed_list:
continue
tentative_g_score = g_score[current] + calc_distance(current, neighbor)
if neighbor not in open_list:
open_list.append(neighbor)
elif tentative_g_score >= g_score[neighbor]:
continue
came_from[neighbor] = current
g_score[neighbor] = tentative_g_score
f_score[neighbor] = g_score[neighbor] + calc_distance(neighbor, end)
return None
while robot.step(1) != -1:
# 获取当前机器人姿态和距离传感器数据
robot_pose = gps.getValues()
distance = distanceSensor.getValue()
# 如果机器人到达目标点,重新规划路径
if calc_distance(robot_pose, target_pose) < 0.5:
current_path = a_star((int(robot_pose[0]), int(robot_pose[2])), (int(target_pose[0]), int(target_pose[1])), [])
current_index = 0
# 如果还有路径,则执行下一个动作
if len(current_path) > 0:
next_pose = current_path[current_index]
if calc_distance(robot_pose, next_pose) < 0.1:
current_index += 1
if current_index >= len(current_path):
current_index = 0
else:
# 计算机器人控制参数
dx = next_pose[0] - robot_pose[0]
dy = next_pose[1] - robot_pose[2]
angle = math.atan2(dy, dx)
distance = calc_distance(robot_pose, next_pose)
left_speed = MAX_SPEED * (2.0 * distance - angle * WHEEL_DISTANCE) / (2.0 * WHEEL_RADIUS)
right_speed = MAX_SPEED * (2.0 * distance + angle * WHEEL_DISTANCE) / (2.0 * WHEEL_RADIUS)
# 控制机器人运动
leftMotor.setVelocity(left_speed)
rightMotor.setVelocity(right_speed)
# 打印机器人姿态和距离传感器数据
print("Robot pose: ", robot_pose)
print("Distance sensor: ", distance)
```
该代码实现了NAO机器人在Webots仿真环境下使用A*算法自主避障。其中,机器人使用GPS获取自身姿态,使用距离传感器获取障碍物距离,使用摄像头获取环境信息。A*算法用于规划机器人的路径,机器人根据路径自主避障并到达目标点。
阅读全文