基于Pytorch 实现LSTM ,不调用nn.LSTM()
时间: 2023-11-11 19:46:19 浏览: 252
实现LSTM可以分为以下几个步骤:
1. 初始化权重和偏置
```python
def init_weights(input_size, hidden_size):
weight_ih = torch.randn(4 * hidden_size, input_size)
weight_hh = torch.randn(4 * hidden_size, hidden_size)
bias_ih = torch.zeros(4 * hidden_size)
bias_hh = torch.zeros(4 * hidden_size)
return weight_ih, weight_hh, bias_ih, bias_hh
```
2. 实现LSTM的前向传播
```python
def forward(x, weight_ih, weight_hh, bias_ih, bias_hh, hidden, cell):
# 计算输入门、遗忘门、输出门以及候选细胞状态
gates = torch.mm(x, weight_ih.t()) + torch.mm(hidden, weight_hh.t()) + bias_ih + bias_hh
input_gate, forget_gate, output_gate, candidate_cell_state = gates.chunk(4, 1)
# 计算细胞状态和隐藏状态
input_gate = torch.sigmoid(input_gate)
forget_gate = torch.sigmoid(forget_gate)
output_gate = torch.sigmoid(output_gate)
candidate_cell_state = torch.tanh(candidate_cell_state)
cell = forget_gate * cell + input_gate * candidate_cell_state
hidden = output_gate * torch.tanh(cell)
return hidden, cell
```
3. 启动LSTM的训练过程
```python
# 定义超参数
input_size = 10
hidden_size = 20
seq_len = 5
batch_size = 3
# 初始化权重和偏置
weight_ih, weight_hh, bias_ih, bias_hh = init_weights(input_size, hidden_size)
# 初始化隐藏状态和细胞状态
hidden = torch.zeros(batch_size, hidden_size)
cell = torch.zeros(batch_size, hidden_size)
# 生成随机输入序列
inputs = torch.randn(seq_len, batch_size, input_size)
# 前向传播
for i in range(seq_len):
hidden, cell = forward(inputs[i], weight_ih, weight_hh, bias_ih, bias_hh, hidden, cell)
# 输出最后一个隐藏状态
print(hidden[-1])
```
这样,我们就实现了一个基于Pytorch的LSTM模型。
阅读全文