max_iters=args.num_steps * args.iter_size * args.batch_size,
时间: 2024-05-18 15:11:56 浏览: 135
这段代码是用来控制训练循环次数的,其中args.num_steps表示总共需要迭代的次数,args.iter_size表示每次迭代需要更新的次数,args.batch_size表示每个batch的大小。通过将这三个值相乘,可以得到总共需要进行的迭代次数。这个值会被用来控制训练循环的次数,确保模型能够充分地训练。
相关问题
val_dataset = get_segmentation_dataset(args.dataset, split='val', mode='val', **data_kwargs) args.iters_per_epoch = len(train_dataset) // (args.num_gpus * args.batch_size) args.max_iters = args.epochs * args.iters_per_epoch
这段代码用于获取验证数据集(val_dataset)。它调用了一个名为`get_segmentation_dataset`的函数,并传递了一些参数,包括`args.dataset`,`split='val'`,`mode='val'`,以及`**data_kwargs`。
`args.dataset`是一个参数,用于指定数据集的名称或路径。`split='val'`表示获取验证集的数据。`mode='val'`表示模式为验证模式。
`**data_kwargs`表示将之前提到的参数字典`data_kwargs`解包,并作为关键字参数传递给`get_segmentation_dataset`函数。
通过调用这个函数,可以获取到一个验证数据集对象,可以在验证过程中使用。
接下来的代码中,通过计算训练数据集的长度(len(train_dataset))以及一些其他参数(args.num_gpus和args.batch_size),来计算每个epoch中的迭代次数(args.iters_per_epoch)。然后,通过将每个epoch中的迭代次数(args.iters_per_epoch)与总的epoch数(args.epochs)相乘,得到最大迭代次数(args.max_iters)。这些值在训练过程中可能会用到。
train_batch_sampler = make_batch_data_sampler(train_sampler, args.batch_size, args.max_iters)val_sampler = make_data_sampler(val_dataset, False, args.distributed) val_batch_sampler = make_batch_data_sampler(val_sampler, args.batch_size)
这段代码用于创建训练数据的批次采样器(train_batch_sampler)和验证数据的批次采样器(val_batch_sampler)。
首先,调用了一个名为`make_batch_data_sampler`的函数来创建训练数据的批次采样器(train_batch_sampler)。它接受三个参数,分别是`train_sampler`,`args.batch_size`和`args.max_iters`。`train_sampler`是之前创建的训练数据的采样器,`args.batch_size`是每个批次的样本数量,`args.max_iters`是最大的迭代次数。通过调用这个函数,可以得到一个用于训练数据的批次采样器(train_batch_sampler)。
接下来,调用了一个名为`make_data_sampler`的函数来创建验证数据的采样器(val_sampler)。它接受三个参数,分别是`val_dataset`,`False`和`args.distributed`。`val_dataset`是之前获取到的验证数据集对象,`False`表示不需要对验证数据进行洗牌操作,`args.distributed`表示是否使用分布式训练。通过调用这个函数,可以得到一个用于验证数据的采样器(val_sampler)。
最后,再次调用了`make_batch_data_sampler`函数来创建验证数据的批次采样器(val_batch_sampler)。它接受三个参数,分别是之前创建的验证数据的采样器(val_sampler),`args.batch_size`是每个批次的样本数量。通过调用这个函数,可以得到一个用于验证数据的批次采样器(val_batch_sampler)。
阅读全文