# Schedule # 100 ep = 184375 iters * 64 images/iter / 118000 images/ep train.max_iter = 100 #184375 lr_multiplier = L(WarmupParamScheduler)( scheduler=L(MultiStepParamScheduler)( values=[1.0, 0.1, 0.01], milestones=[163889, 177546], num_updates=train.max_iter, ), warmup_length=250 / train.max_iter, warmup_factor=0.001, )
时间: 2023-12-08 10:03:33 浏览: 112
这段代码看起来是在设置一个训练的计划(schedule),其中包括了训练的总轮数(train.max_iter=100),每轮训练需要迭代的次数(184375),每次迭代使用的图像数量(64),以及学习率(lr)的调度方式。具体来说,这里使用了一个多步骤调度器(MultiStepParamScheduler),它将在训练的不同阶段设置不同的学习率值。在本例中,学习率的值在163889和177546次迭代时分别降低为原来的0.1和0.01倍。此外,代码中还使用了一个WarmupParamScheduler来在开始阶段逐渐升高学习率的值,以避免训练过程中出现梯度爆炸或消失等问题。具体来说,它将在训练的前250/100=2.5个轮次中逐渐将学习率从0.001提高至设定的最大值。
相关问题
检查代码是否有错误或异常:class CosineAnnealingWarmbootingLR: def __init__(self, base_lr=0.00001, epochs=0, eta_min=0.05, steps=[], step_scale=0.8, lf=None, batchs=0, warmup_epoch=0, epoch_scale=1.0): # 初始化函数,接受一些参数 self.warmup_iters = batchs * warmup_epoch # 热身迭代次数 self.eta_min = eta_min # 最小学习率 self.iters = -1 # 当前迭代次数 self.iters_batch = -1 # 当前批次迭代次数 self.base_lr = base_lr # 初始学习率 self.step_scale = step_scale # 步长缩放因子 steps.sort() # 步长列表排序 self.steps = [warmup_epoch] + [i for i in steps if (i < epochs and i > warmup_epoch)] + [epochs] # 步长列表 self.gap = 0 # 步长间隔 self.last_epoch = 0 # 上一个 epoch self.lf = lf # 学习率函数 self.epoch_scale = epoch_scale # epoch 缩放因子 def step(self, external_iter=None): # 学习率调整函数 self.iters = 1 # 当前迭代次数 if external_iter is not None: self.iters = external_iter iters = self.iters - self.warmup_iters # 当前迭代次数减去热身迭代次数 last_epoch = self.last_epoch # 上一个 epoch scale = 1.0 # 缩放因子 for i in range(len(self.steps)-1): if (iters <= self.steps[i+1]): self.gap = self.steps[i+1] - self.steps[i] # 步长间隔 iters = iters - self.steps[i] # 当前迭代次数减去当前步长 last_epoch = self.steps[i] # 上一个 epoch if i != len(self.steps)-2: self.gap *= self.epoch_scale # 如果不是最后一个步长,乘以 epoch 缩放因子 break scale *= self.step_scale # 缩放因子乘以步长缩放因子 if self.lf is None: self.base_lr= scale * self.base_lr * ((((1 - math.cos(iters * math.pi / self.gap)) / 2) ** 1.0) * (1.0 - self.eta_min) + self.eta_min) # 计算学习率 else: self.base_lr = scale * self.base_lr * self.lf(iters, self.gap) # 使用学习率函数计算学习率 self.last_epoch = last_epoch # 更新上一个 epoch return self.base_lr # 返回学习率 def step_batch(self): # 批次学习率调整函数 self.iters_batch = 1 # 当前批次迭代次数 if self.iters_batch < self.warmup_iters: rate = self.iters_batch / self.warmup_iters # 计算学习率缩放因子 self.base_lr= self.base_lr * rate # 缩放学习率 return self.base_lr # 返回学习率 else: return None # 如果已经完成热身,返回 None
这段代码是定义了一个名为CosineAnnealingWarmbootingLR的类,其中包含了一些参数和方法。这些参数包括:base_lr(基础学习率)、epochs(训练轮数)、eta_min(最小学习率)、steps(学习率变化步数)、step_scale(学习率变化比例)、lf(学习率变化函数)、batchs(每个批次的大小)、warmup_epoch(预热轮数)和epoch_scale(轮数缩放比例)。需要检查代码是否有错误或异常。
def get_lr_scheduler(lr_decay_type, lr, min_lr, total_iters, warmup_iters_ratio=0.1, warmup_lr_ratio=0.1, no_aug_iter_ratio=0.3, step_num=10): def yolox_warm_cos_lr(lr, min_lr, total_iters, warmup_total_iters, warmup_lr_start, no_aug_iter, iters): if iters <= warmup_total_iters: # lr = (lr - warmup_lr_start) * iters / float(warmup_total_iters) + warmup_lr_start lr = (lr - warmup_lr_start) * pow(iters / float(warmup_total_iters), 2 ) + warmup_lr_start elif iters >= total_iters - no_aug_iter: lr = min_lr else: lr = min_lr + 0.5 * (lr - min_lr) * ( 1.0 + math.cos( math.pi * (iters - warmup_total_iters) / (total_iters - warmup_total_iters - no_aug_iter) ) ) return lr def step_lr(lr, decay_rate, step_size, iters): if step_size < 1: raise ValueError("step_size must above 1.") n = iters // step_size out_lr = lr * decay_rate ** n return out_lr if lr_decay_type == "cos": warmup_total_iters = min(max(warmup_iters_ratio * total_iters, 1), 3) warmup_lr_start = max(warmup_lr_ratio * lr, 1e-6) no_aug_iter = min(max(no_aug_iter_ratio * total_iters, 1), 15) func = partial(yolox_warm_cos_lr, lr, min_lr, total_iters, warmup_total_iters, warmup_lr_start, no_aug_iter) else: decay_rate = (min_lr / lr) ** (1 / (step_num - 1)) step_size = total_iters / step_num func = partial(step_lr, lr, decay_rate, step_size) return func什么作用
这段代码定义了一个函数 `get_lr_scheduler`,用于获取学习率调度器(learning rate scheduler)的函数对象。
在函数内部,根据给定的学习率衰减类型 `lr_decay_type`,以及一些其他参数(如学习率、最小学习率、总迭代次数等),选择相应的学习率调度算法。
如果 `lr_decay_type` 是 "cos",则使用 `yolox_warm_cos_lr` 函数作为学习率调度算法。该算法根据当前迭代次数 `iters`,在预热阶段使用余弦函数进行学习率的调整,然后在训练阶段保持学习率不变。
如果 `lr_decay_type` 不是 "cos",则使用 `step_lr` 函数作为学习率调度算法。该算法在训练过程中按照给定的步长进行学习率的衰减。
最后,返回选定的学习率调度算法函数对象。
总而言之,这段代码的作用是根据指定的学习率衰减类型和相关参数,获取相应的学习率调度器函数对象,用于在训练过程中动态地调整学习率。
阅读全文
相关推荐















