% 计算几何质心,有效区域的确定 c = regionprops(imf, 'centroid'); centroid = cat(1, c.Centroid); %设定有效区域大小 box_size = 4096; %提取有效区域 xmin = max(round(centroid(1)-box_size/2), 1); ymin = max(round(centroid(2)-box_size/2), 1); xmax = min(round(centroid(1)+box_size/2), size(imf, 2)); ymax = min(round(centroid(2)+box_size/2), size(imf, 1)); I_valid = imf(ymin:ymax, xmin:xmax); % 提取低频子带 [LL, LH, HL, HH] = lwt2(I_valid); % 低频子带分块 Block=cell(1,4096); w=0; for i=1:4:253 for j=1:4:253 w=w+1; Block{w}=LL(i:i+3,j:j+3); end end

时间: 2023-09-06 14:10:37 浏览: 51
这段代码看起来没有明显的语法错误,但是需要注意以下几点: 1. `imf` 变量需要在这段代码之前定义并赋值,否则会报错。 2. `regionprops` 函数需要传入一个二值图像,如果 `imf` 不是二值图像,需要通过阈值分割或其他方法将其转换为二值图像。 3. `size(imf, 2)` 和 `size(imf, 1)` 分别获取图像的宽度和高度,需要注意它们的顺序。 4. `lwt2` 函数需要在这段代码之前定义并赋值,否则会报错。 5. `Block` 变量需要在这段代码之前定义,例如 `Block = cell(1, 4096)`。此外,`Block` 的大小为 4096,但是 `LL` 的大小可能不是 4096,需要根据实际情况调整代码。 6. `LL` 变量可能是一个多维数组,需要注意在使用它时的索引方式。 希望这些注意事项能帮到你。
相关问题

% Grayscale weighted average image fusion a = [0.25, 0.25, 0.25, 0.25]; imf = a(1)*mat2gray(uint8(normim1)) + a(2)*mat2gray(uint8(normim2)) + a(3)*mat2gray(uint8(normim3)) + a(4)*mat2gray(uint8(normim4)); imshow(imf); % Calculation of the geometric center of mass, determination of the effective region imf_bw = imbinarize(imf); imf_bw = imfill(imf_bw, 'holes'); % 填充孔洞 imf_props = regionprops(imf_bw, 'BoundingBox', 'Area', 'Centroid'); % 获取连通区域属性 [~, idx] = max([imf_props.Area]); % 取面积最大的连通区域 bbox = imf_props(idx).BoundingBox; % 获取包围盒 centroid = imf_props(idx).Centroid; % 获取几何质心坐标 % Determine the inner square area d = min(bbox(3), bbox(4)); % 取包围盒宽和高的最小值 x = bbox(1) + (bbox(3) - d) / 2; % 计算正方形左上角的坐标 y = bbox(2) + (bbox(4) - d) / 2; imf_roi = imcrop(imf, [x, y, d, d]); % 截取正方形区域 % Determine the effective area r = d / 2; % 半径 s = sqrt(2)*r; % 正方形边长 x = centroid(1) - s/2; % 正方形左上角x坐标 y = centroid(2) - s/2; % 正方形左上角y坐标 ROI = imcrop(imf, [x y s-1 s-1]); % 提取有效区域

这段代码实现了图像融合和提取有效区域的功能。首先,将四张灰度图像(normim1、normim2、normim3、normim4)按照权重系数a进行加权平均,得到融合后的图像imf。然后,使用imbinarize函数将imf转换为二值图像,并使用imfill函数填充孔洞,得到填充后的二值图imf_bw。接着,使用regionprops函数获取imf_bw中所有连通区域的属性,并取面积最大的连通区域作为感兴趣区域。利用该区域的包围盒计算出正方形区域的左上角坐标和边长,将其用imcrop函数截取出来,即为提取的有效区域ROI。该区域的中心坐标即为几何质心坐标。最后,根据ROI的半径和边长计算出圆形区域(以几何质心为圆心,半径为正方形边长的一半)并用imcrop函数提取出来,即为有效区域。

% 检测运动目标并绘制边框 stats = regionprops(filledFrame, 'BoundingBox', 'Centroid'); if ~isempty(stats) count = count + 1; centroid = centroid + stats(1).Centroid; rectangle('Position', stats(1).BoundingBox, 'EdgeColor', 'r'); end stats与centroid矩阵维数不同

根据你提供的代码,`stats` 是一个结构体,包含了多个属性,其中包括 `BoundingBox` 和 `Centroid`。而 `centroid` 是一个向量,用来存储所有检测到的目标的质心坐标之和,它的维度应该是二维的。因此,你需要根据实际情况修改代码,使得 `centroid` 的维度与检测到的目标数量相匹配。例如,可以将 `centroid` 定义为一个 $2 \times N$ 的矩阵,其中 $N$ 表示检测到的目标数量,每一列存储一个目标的质心坐标。具体修改方法可以参考下面的示例代码: ```matlab % 初始化变量 count = 0; centroid = []; % 用矩阵存储所有目标的质心坐标 % 检测运动目标并绘制边框 stats = regionprops(filledFrame, 'BoundingBox', 'Centroid'); if ~isempty(stats) count = count + 1; centroid(:, count) = stats(1).Centroid; % 将当前目标的质心坐标存储到矩阵中 rectangle('Position', stats(1).BoundingBox, 'EdgeColor', 'r'); end ``` 需要注意的是,上述代码仅考虑了检测到单个目标的情况,如果需要处理多个目标,可以在 `if` 语句中使用循环遍历 `stats` 结构体数组,然后依次将每个目标的质心坐标存储到矩阵中。

相关推荐

最新推荐

recommend-type

源代码-QQ价值评估程序ASP爬虫 [缓存技术版].zip

源代码-QQ价值评估程序ASP爬虫 [缓存技术版].zip
recommend-type

2007-2021年 乡村旅游指标-最美乡村数、旅游示范县数、旅行社数、景区数、农家乐数.zip

乡村旅游也是促进乡村经济发展的有效途径。通过发展乡村旅游,可以带动乡村相关产业的发展,提高乡村居民的收入,促进乡村的经济发展和社会进步。此外,乡村旅游还能促进城乡交流,推动城乡统筹发展。 数据整理各个省地区乡村旅游相关指标包括从业人数、美丽乡村数量、乡村旅游示范县数量,传统村落数量、景区数量、旅游收入,旅客周转量数据​。 数据名称:乡村旅游指标-最美乡村数、旅游示范县数、旅行社数、景区数、农家乐数 城市、年份、星级饭店数/家、A 级旅游景区数量/个、旅行社数/家、旅游接待总人数/万人、旅游总收入/亿元、旅客周转量、GDP、当地从业人员、森林覆盖率、生活垃圾无害化处理率、PM2.5浓度、中国美丽休闲乡村数量、休闲农业与乡村旅游示范县(点)、传统村落数量
recommend-type

C语言入门教程及100例

c语言基础学习及实用基础案例,帮助掌握编码基础
recommend-type

elasticsearch下载配置及案例&项目源码

elasticsearch下载配置及案例&项目源码
recommend-type

a*搜索求解8数码问题prediction-maste笔记

a*搜索求解8数码问题
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。