train_data_tensor_list = [torch.tensor(x) for x in train_data_list] train_data_tensor = torch.stack(train_data_tensor_list) train_label_tensor = torch.tensor(train_label_list) train_dataset = TensorDataset(train_data_tensor, train_label_tensor) print(train_dataset) val_data_tensor_list = [torch.tensor(x) for x in val_data_list] val_data_tensor = torch.stack(val_data_tensor_list) val_label_tensor = torch.tensor(val_label_list) val_dataset = TensorDataset(val_data_tensor, val_label_tensor) print(val_dataset)
时间: 2023-08-11 21:04:36 浏览: 101
这段代码的作用是将训练数据和验证数据转换为 PyTorch 中的 TensorDataset 数据集,并将数据集打印出来。首先,train_data_list 和 train_label_list 分别是训练数据和对应的标签,每个样本都是一个列表或数组。接下来,使用列表解析式将 train_data_list 中的每个样本转换为一个 PyTorch tensor,并将这些 tensor 存储在 train_data_tensor_list 列表中。然后,使用 torch.stack() 函数将 train_data_tensor_list 中的 tensor 沿着一个新的维度进行拼接,得到一个形状为 [num_samples, input_dim] 的二维 tensor,其中 num_samples 是样本数,input_dim 是每个样本的输入维度。train_label_tensor 也是类似的 tensor,其中每个元素是一个标签。同样的方法用于创建 val_dataset。最后,使用 print() 函数打印出 train_dataset 和 val_dataset,这些数据集将被用于 DataLoader 进行批量化训练。
相关问题
train_data_tensor_list = [torch.tensor(x) for x in train_data_list] train_data_tensor = torch.stack(train_data_tensor_list) train_label_tensor = torch.tensor(train_label_list) val_data_tensor = torch.stack(val_data_list) val_label_tensor = torch.tensor(val_label_list) train_dataset = TensorDataset(train_data_tensor, train_label_tensor) val_dataset = TensorDataset(val_data_tensor, val_label_tensor)
这段代码是用来创建 PyTorch 的 TensorDataset 数据集的。首先,train_data_list 是一组训练数据,每个元素都是一个样本,可以理解为一个输入向量。train_label_list 是对应的标签,即每个样本的正确输出。接下来,将 train_data_list 中的每个元素都转化为一个 PyTorch 的 tensor,并将这些 tensor 存储在一个列表 train_data_tensor_list 中。然后,使用 torch.stack() 函数将 train_data_tensor_list 中的 tensor 沿着一个新的维度进行拼接,得到一个形状为 [num_samples, input_dim] 的二维 tensor,其中 num_samples 是样本数,input_dim 是每个样本的输入维度。train_label_tensor 也是类似的 tensor,其中每个元素是一个标签。同样的方法用于创建 val_dataset。最后,train_dataset 和 val_dataset 都被封装在 TensorDataset 中,可以用于 DataLoader 进行批量化训练。
修改一下这段代码在pycharm中的实现,import pandas as pd import numpy as np from sklearn.model_selection import train_test_split import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim #from torchvision import datasets,transforms import torch.utils.data as data #from torch .nn:utils import weight_norm import matplotlib.pyplot as plt from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import cohen_kappa_score data_ = pd.read_csv(open(r"C:\Users\zhangjinyue\Desktop\rice.csv"),header=None) data_ = np.array(data_).astype('float64') train_data =data_[:,:520] train_Data =np.array(train_data).astype('float64') train_labels=data_[:,520] train_labels=np.array(train_data).astype('float64') train_data,train_data,train_labels,train_labels=train_test_split(train_data,train_labels,test_size=0.33333) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) start_epoch=1 num_epoch=1 BATCH_SIZE=70 Ir=0.001 classes=('0','1','2','3','4','5') device=torch.device("cuda"if torch.cuda.is_available()else"cpu") torch.backends.cudnn.benchmark=True best_acc=0.0 train_dataset=data.TensorDataset(train_data,train_labels) test_dataset=data.TensorDataset(train_data,train_labels) train_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True) test_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True)
修改后的代码如下所示:
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data
import matplotlib.pyplot as plt
from sklearn.metrics import precision_score, recall_score, f1_score, cohen_kappa_score
data_ = pd.read_csv(r"C:\Users\zhangjinyue\Desktop\rice.csv", header=None)
data_ = np.array(data_).astype('float64')
train_data = data_[:, :520]
train_labels = data_[:, 520]
train_data, _, train_labels, _ = train_test_split(train_data, train_labels, test_size=0.33333)
train_data = torch.Tensor(train_data)
train_labels = torch.LongTensor(train_labels)
train_data = train_data.reshape(-1, 1, 20, 26)
start_epoch = 1
num_epoch = 1
BATCH_SIZE = 70
Ir = 0.001
classes = ('0', '1', '2', '3', '4', '5')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.backends.cudnn.benchmark = True
best_acc = 0.0
train_dataset = data.TensorDataset(train_data, train_labels)
test_dataset = data.TensorDataset(train_data, train_labels)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)
```
请注意,我做了以下修改:
1. 移除了不需要的导入语句。
2. 修复了变量名拼写错误。
3. 移除了重复的代码行。
4. 修正了 `torch.utils.data.DataLoader` 的拼写错误。
5. 修正了数据集分割时的变量名错误。
请根据你的实际需求进一步调整代码。
阅读全文