解释df.iloc[-1]['ma60']> df.iloc[-2]['ma60']
时间: 2023-10-29 22:07:30 浏览: 80
这是一个IT类问题,我可以回答。这段代码涉及到 pandas 库中 DataFrame 对象的使用。其中,df 是一个 DataFrame 对象,iloc 方法用于通过行号或列号进行索引,-1 表示最后一行,['ma60'] 表示取该行 ma60 这一列的值。因此,df.iloc[-1]['ma60'] 表示获取 DataFrame 对象 df 中最后一行的 ma60 列的值。同理,df.iloc[-2]['ma60'] 表示获取 DataFrame 对象 df 中倒数第二行的 ma60 列的值。通过比较这两个值的大小,判断最后一行的 ma60 是否大于倒数第二行的 ma60。
相关问题
# ===策略参数 # n代表取平均线和标准差的参数 # m代表标准差的倍数 n = int(para[0]) m = para[1] ma_n = para[2] # MA指标的参数 # ===计算指标 # 计算均线 df['median'] = df['close'].rolling(n).mean() # 此处只计算最后几行的均线值,因为没有加min_period参数 median = df.iloc[-1]['median'] median2 = df.iloc[-2]['median'] # 计算标准差,使用无偏估计 df['std'] = df['close'].rolling(n, min_periods=1).std(ddof=1) # 计算上下轨道,加入波动率因子 volatility_factor = 2 # 波动率因子,可以根据实际情况调整 df['upper'] = median + volatility_factor * df['std'] df['lower'] = median - volatility_factor * df['std'] # ===计算MA指标 df['MA'] = df['close'].rolling(ma_n).mean() ma = df.iloc[-1]['MA'] ma2 = df.iloc[-2]['MA'] # ===寻找交易信号 signal = 0 close = df.iloc[-1]['close'] close2 = df.iloc[-2]['close'] std = df.iloc[-1]['std'] # 找出做多信号 if (close > df.iloc[-1]['upper']) and (close2 <= df.iloc[-2]['upper']) and (close > ma) and (close2 <= ma2) and (std < volatility_factor * ma): signal = 1 # 找出做空信号 elif (close < df.iloc[-1]['lower']) and (close2 >= df.iloc[-2]['lower']) and (close < ma) and (close2 >= ma2) and (std < volatility_factor * ma): signal = -1 # 找出平仓信号 elif ((close < median) and (close2 >= median2)) or ((close > median) and (close2 <= median2)): signal = 0 return signal
这段代码看起来像是一个基于布林带和均线的交易策略,大致的思路是:计算收盘价的均线和标准差,根据均线和标准差计算上下轨道,然后根据收盘价穿越上下轨道以及均线的情况来判断是否有做多或做空信号,同时也判断是否需要平仓。其中,参数 n 和 m 以及 volatility_factor 可以根据实际情况进行调整。需要注意的是,这只是一段简单的代码,实际应用时需要根据具体情况进行进一步修改和完善。
# ===策略参数 # n代表取平均线和标准差的参数 # m代表标准差的倍数 n = int(para[0]) m = para[1] ma_n = para[2] # MA指标的参数 # ===计算指标 # 计算均线 df['median'] = df['close'].rolling(n).mean() # 此处只计算最后几行的均线值,因为没有加min_period参数 median = df.iloc[-1]['median'] median2 = df.iloc[-2]['median'] # 计算标准差 df['std'] = df['close'].rolling(n).std(ddof=0) # ddof代表标准差自由度,只计算最后几行的均线值,因为没有加min_period参数 std = df.iloc[-1]['std'] std2 = df.iloc[-2]['std'] # 计算上轨、下轨道 upper = median + m * std lower = median - m * std upper2 = median2 + m * std2 lower2 = median2 - m * std2 # ===计算MA指标 df['MA'] = df['close'].rolling(ma_n).mean() ma = df.iloc[-1]['MA'] ma2 = df.iloc[-2]['MA'] # ===寻找交易信号 signal = None close = df.iloc[-1]['close'] close2 = df.iloc[-2]['close'] # 找出做多信号 if (close > upper) and (close2 <= upper2) and (close > ma) and (close2 <= ma2): signal = 1 # 找出做空信号 elif (close < lower) and (close2 >= lower2) and (close < ma) and (close2 >= ma2): signal = -1 # 找出做多平仓信号 elif (close < median) and (close2 >= median2): signal = 0 # 找出做空平仓信号 elif (close > median) and (close2 <= median2): signal = 0 return signal以上代码加入波动率来过滤信号
要加入波动率来过滤信号的话,可以在计算标准差时,将参数ddof设为1,这样计算得到的是无偏估计的标准差,再将上下轨道分别乘以一个波动率因子即可。具体实现如下:
```python
# 计算标准差,使用无偏估计
df['std'] = df['close'].rolling(n, min_periods=1).std(ddof=1)
# 计算上下轨道,加入波动率因子
volatility_factor = 2 # 波动率因子,可以根据实际情况调整
df['upper'] = df['median'] + volatility_factor * df['std']
df['lower'] = df['median'] - volatility_factor * df['std']
# 找出做多信号
if (close > upper) and (close2 <= upper2) and (close > ma) and (close2 <= ma2) and (std < volatility_factor * ma):
signal = 1
# 找出做空信号
elif (close < lower) and (close2 >= lower2) and (close < ma) and (close2 >= ma2) and (std < volatility_factor * ma):
signal = -1
```
这里假设波动率因子为2,如果标准差超过了2倍的移动平均值,就视为市场波动较大,此时不考虑交易信号。
阅读全文