简述装载问题的分支界限算法步骤,分析该算法的时间复杂度并给出一个具体的算例。
时间: 2023-06-20 19:05:01 浏览: 114
装载问题是一类经典的NP完全问题,分支界限算法是一种针对该问题的优秀求解方法。其基本思想是:通过不断的分支和剪枝,将搜索空间缩小到最优解所在的区域,以提高搜索效率。
分支界限算法的步骤如下:
1. 初始化:设定搜索树根节点为初始状态,将当前状态加入到优先队列中。
2. 扩展节点:从优先队列中取出一个节点进行扩展,生成该节点的所有子节点,并计算它们的上界和下界。
3. 判断是否达到终止条件:如果已经找到了最优解,则终止搜索;否则,将所有子节点加入到优先队列中。
4. 重复步骤2~3,直到找到最优解或者队列为空。
分支界限算法的时间复杂度取决于搜索树的大小,因此随着数据规模的增加,时间复杂度呈指数级增长,效率较低。但是,该算法的优点在于能够保证找到最优解。
下面给出一个具体算例:假设有一个装载问题,要求将若干物品装入船中,船的载重量为C,物品的重量分别为w1、w2、w3、w4、w5、w6,如何才能使船的利用率最大?
我们先对物品按照重量从大到小排序,得到w6、w5、w4、w3、w2、w1。
初始状态下,船的空间为C,当前利用率为0。
第一步,将w6放入船中,船的剩余空间为C-w6,当前利用率为w6/C。
第二步,将w5放入船中,船的剩余空间为C-w6-w5,当前利用率为(w6+w5)/C。
第三步,将w4放入船中,船的剩余空间为C-w6-w5-w4,当前利用率为(w6+w5+w4)/C。
第四步,将w3放入船中,船的剩余空间为C-w6-w5-w4-w3,当前利用率为(w6+w5+w4+w3)/C。
第五步,由于w2的重量已经超过了剩余空间,因此不可能再放入船中,我们需要回溯到第四步,将w3取出。
第六步,将w2放入船中,船的剩余空间为C-w6-w5-w4-w2,当前利用率为(w6+w5+w4+w2)/C。
第七步,由于w1的重量已经超过了剩余空间,因此不可能再放入船中,我们需要回溯到第六步,将w2取出。
第八步,将w1放入船中,船的剩余空间为C-w6-w5-w4-w1,当前利用率为(w6+w5+w4+w1)/C。
通过该算例的演示,我们可以看出,分支界限算法能够高效地解决装载问题,找到最优解。
阅读全文