解释代码fc8_index = cellfun(@(t) isequal(t.name, 'fc8'), net.layers)==1;
时间: 2024-06-03 16:11:13 浏览: 131
这行代码的作用是在神经网络的每一层中,找到名字为'fc8'的层并返回其在网络中对应的索引值。其中 cellfun 用于对每个层进行操作,@(t) 表示对层名为 'fc8' 的层做操作,即判断该层名是否等于'fc8',isequal(t.name, 'fc8')表示层名是否等于'fc8',最后的==1表示返回值为逻辑值的向量,其中等于1的位置就是名字为'fc8'的层在网络中的索引值。
相关问题
fc8l = cellfun(@(a) strcmp(a.name, 'fc8'), net.layers)==1;
这段代码是 MATLAB 中用于查找神经网络中最后一个全连接层的代码。
`cellfun` 函数会对 `net.layers` 中的每个元素应用一个匿名函数,该匿名函数的作用是检查该层的名称是否为 `'fc8'`。如果是,则返回 1,否则返回 0。最终结果是一个逻辑数组,其中每个元素对应于 `net.layers` 中的一个层,并指示该层是否为 `'fc8'` 层。
然后,`==1` 操作符会将逻辑数组转换为一个由 0 和 1 组成的数组,其中每个元素都表示对应层是否为 `'fc8'` 层。最后,该数组用于索引 `net.layers`,以获取最后一个全连接层。
为以下代码的每句话加注释:from keras import layers, models, Input from keras.models import Model from keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout def VGG19(nb_classes, input_shape): input_tensor = Input(shape=input_shape) # 1st block x = Conv2D(64, (3,3), activation='relu', padding='same',name='conv1a')(input_tensor) x = Conv2D(64, (3,3), activation='relu', padding='same',name='conv1b')(x) x = MaxPooling2D((2,2), strides=(2,2), name = 'pool1')(x) # 2nd block x = Conv2D(128, (3,3), activation='relu', padding='same',name='conv2a')(x) x = Conv2D(128, (3,3), activation='relu', padding='same',name='conv2b')(x) x = MaxPooling2D((2,2), strides=(2,2), name = 'pool2')(x) # 3rd block x = Conv2D(256, (3,3), activation='relu', padding='same',name='conv3a')(x) x = Conv2D(256, (3,3), activation='relu', padding='same',name='conv3b')(x) x = Conv2D(256, (3,3), activation='relu', padding='same',name='conv3c')(x) x = Conv2D(256, (3,3), activation='relu', padding='same',name='conv3d')(x) x = MaxPooling2D((2,2), strides=(2,2), name = 'pool3')(x) # 4th block x = Conv2D(512, (3,3), activation='relu', padding='same',name='conv4a')(x) x = Conv2D(512, (3,3), activation='relu', padding='same',name='conv4b')(x) x = Conv2D(512, (3,3), activation='relu', padding='same',name='conv4c')(x) x = Conv2D(512, (3,3), activation='relu', padding='same',name='conv4d')(x) x = MaxPooling2D((2,2), strides=(2,2), name = 'pool4')(x) # 5th block x = Conv2D(512, (3,3), activation='relu', padding='same',name='conv5a')(x) x = Conv2D(512, (3,3), activation='relu', padding='same',name='conv5b')(x) x = Conv2D(512, (3,3), activation='relu', padding='same',name='conv5c')(x) x = Conv2D(512, (3,3), activation='relu', padding='same',name='conv5d')(x) x = MaxPooling2D((2,2), strides=(2,2), name = 'pool5')(x) # full connection x = Flatten()(x) x = Dense(4096, activation='relu', name='fc6')(x) # x = Dropout(0.5)(x) x = Dense(4096, activation='relu', name='fc7')(x) # x = Dropout(0.5)(x) output_tensor = Dense(nb_classes, activation='softmax', name='fc8')(x) model = Model(input_tensor, output_tensor) return model model=VGG19(1000, (224, 224, 3)) model.summary()
```python
# 导入必要的模块
from keras import layers, models, Input
from keras.models import Model
from keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout
# 定义VGG19模型
def VGG19(nb_classes, input_shape):
# 定义输入层
input_tensor = Input(shape=input_shape)
# 第一块
x = Conv2D(64, (3,3), activation='relu', padding='same',name='conv1a')(input_tensor)
x = Conv2D(64, (3,3), activation='relu', padding='same',name='conv1b')(x)
x = MaxPooling2D((2,2), strides=(2,2), name = 'pool1')(x)
# 第二块
x = Conv2D(128, (3,3), activation='relu', padding='same',name='conv2a')(x)
x = Conv2D(128, (3,3), activation='relu', padding='same',name='conv2b')(x)
x = MaxPooling2D((2,2), strides=(2,2), name = 'pool2')(x)
# 第三块
x = Conv2D(256, (3,3), activation='relu', padding='same',name='conv3a')(x)
x = Conv2D(256, (3,3), activation='relu', padding='same',name='conv3b')(x)
x = Conv2D(256, (3,3), activation='relu', padding='same',name='conv3c')(x)
x = Conv2D(256, (3,3), activation='relu', padding='same',name='conv3d')(x)
x = MaxPooling2D((2,2), strides=(2,2), name = 'pool3')(x)
# 第四块
x = Conv2D(512, (3,3), activation='relu', padding='same',name='conv4a')(x)
x = Conv2D(512, (3,3), activation='relu', padding='same',name='conv4b')(x)
x = Conv2D(512, (3,3), activation='relu', padding='same',name='conv4c')(x)
x = Conv2D(512, (3,3), activation='relu', padding='same',name='conv4d')(x)
x = MaxPooling2D((2,2), strides=(2,2), name = 'pool4')(x)
# 第五块
x = Conv2D(512, (3,3), activation='relu', padding='same',name='conv5a')(x)
x = Conv2D(512, (3,3), activation='relu', padding='same',name='conv5b')(x)
x = Conv2D(512, (3,3), activation='relu', padding='same',name='conv5c')(x)
x = Conv2D(512, (3,3), activation='relu', padding='same',name='conv5d')(x)
x = MaxPooling2D((2,2), strides=(2,2), name = 'pool5')(x)
# 全连接层
x = Flatten()(x)
x = Dense(4096, activation='relu', name='fc6')(x)
# x = Dropout(0.5)(x)
x = Dense(4096, activation='relu', name='fc7')(x)
# x = Dropout(0.5)(x)
output_tensor = Dense(nb_classes, activation='softmax', name='fc8')(x)
# 定义模型
model = Model(input_tensor, output_tensor)
return model
# 创建模型
model=VGG19(1000, (224, 224, 3))
# 打印模型的概述
model.summary()
```
注释:
1. 导入必要的模块
2. 定义VGG19模型,参数包括分类数和输入图像的形状
3. 定义输入层
4. 第一块:包含两个卷积层和一个最大池化层
5. 第二块:包含两个卷积层和一个最大池化层
6. 第三块:包含四个卷积层和一个最大池化层
7. 第四块:包含四个卷积层和一个最大池化层
8. 第五块:包含四个卷积层和一个最大池化层
9. 全连接层:两个Dense层和一个输出层
10. 定义模型
11. 创建模型
12. 打印模型的概述
阅读全文