2. 计算两只骰子点数组合(随机事件)的熵,需包含下述步骤: (1)用列表类型保存一只骰子(色子)的可能结果; (2)表示并保存两只骰子的可能点数组合;提示(不强求):可以使用itertools.product()函数产生两个列表的笛卡尔积。 (3)将两只骰子的点数之和作为随机事件,例如两只骰子分别取点1和点2,与分别取点2和点1视为同一种组合,计算出每种组合的数量(频数),存入一个列表结构。 (4)由每种组合的频数,计算该组合的频率(概率)。 (5)计算两只骰子点数和的概率分布的熵。
时间: 2024-03-13 16:43:49 浏览: 137
好的,我来回答你的问题。首先,我们先来定义一只骰子的可能结果,可以使用 Python 中的列表类型来保存:
```python
dice = [1, 2, 3, 4, 5, 6]
```
然后,我们可以使用 `itertools.product()` 函数来表示并保存两只骰子的可能点数组合:
```python
import itertools
dice_combinations = list(itertools.product(dice, repeat=2))
```
接下来,我们将两只骰子的点数之和作为随机事件,并计算出每种组合的数量(频数),存入一个列表结构:
```python
count = [0] * 11
for roll in dice_combinations:
count[roll[0] + roll[1] - 2] += 1
```
其中,`count` 列表中的第 `i` 个元素表示两只骰子的点数和为 `i+2` 的组合数量。
然后,我们可以由每种组合的频数,计算该组合的频率(概率):
```python
total = sum(count)
probs = [c / total for c in count]
```
最后,我们可以计算两只骰子点数和的概率分布的熵:
```python
import math
entropy = -sum([p * math.log2(p) for p in probs if p > 0])
```
这里使用了信息熵的计算公式,其中 `p` 表示每种组合的概率。
这样,我们就完成了计算两只骰子点数组合的熵的过程。
阅读全文