uint32_t CAMREG_WRITE(uint32_t *addr, uint32_t reg, uint32_t val){ i++; #if (defined(CAM_ZYNQ_1200W) || defined(CAM_ZYNQ_1200W_1600w) || defined(CAM_ZYNQ_1000W) || defined(CAM_ZYNQ_200W)) && defined(CCD_VENDOR_E2V) *(addr) = ((uint32_t)(reg) << 16) + (uint32_t)((val)&0xffff); #elif defined(CAM_ZYNQ_230W) && defined(CCD_VENDOR_PYTHON2000) *(addr) = ((uint32_t)(reg) << 16) + (uint32_t)((val)&0x0ffff); #elif defined(CAM_ZYNQ_2000W) || defined(CAM_ZYNQ_1200W_V1) *(addr) = ((uint32_t)(reg) << 8) + (uint32_t)((val & 0x0ff) | 0x81000000); #elif (defined(CAM_ZYNQ_4KLINE) || defined(CAM_ZYNQ_8KLINE)) && defined(CCD_VENDOR_E2V) *(addr) = ((uint32_t)(reg) << 24) + (uint32_t)((val)&0x0ffffff); #endif write_record[reg] = *addr; write_count = i++; return write_record[reg]; } 
时间: 2023-06-03 16:05:22 浏览: 28
这段代码定义了一个名为CAMREG_WRITE的函数,它有三个输入参数,分别为指向uint32_t类型地址的指针addr、要写入的寄存器reg和要写入寄存器的值val。然后定义了一个i变量,但未进行赋值或使用。
相关问题
stm32f103c6 直接访问地址读取RTC_CNTL数值 代码示例
### 回答1:
以下是使用STM32F103C6芯片读取RTC_CNTL寄存器值的示例代码:
```c
#include "stm32f10x.h"
#define RTC_CNTL_ADDR ((uint32_t)0x4000284C) // RTC_CNTL寄存器地址
int main(void)
{
uint32_t rtc_cntl_val; // 用于存储RTC_CNTL寄存器的值
// 使能外设时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
// 配置PA0为推挽输出模式
GPIO_InitTypeDef gpio;
gpio.GPIO_Pin = GPIO_Pin_0;
gpio.GPIO_Mode = GPIO_Mode_Out_PP;
gpio.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &gpio);
// 直接访问RTC_CNTL寄存器读取其值
rtc_cntl_val = *((volatile uint32_t *)RTC_CNTL_ADDR);
// 将RTC_CNTL寄存器的值输出到PA0引脚
if (rtc_cntl_val & 0x01) {
GPIO_SetBits(GPIOA, GPIO_Pin_0);
} else {
GPIO_ResetBits(GPIOA, GPIO_Pin_0);
}
while (1);
return 0;
}
```
该示例代码中使用了STM32的GPIO外设将RTC_CNTL寄存器的值输出到PA0引脚。需要注意的是,直接访问内存地址可能会对系统造成一定风险,请谨慎使用。
### 回答2:
要想直接访问地址读取RTC_CNTL数值,可以使用STM32F103C6单片机的寄存器来实现。
首先,需要声明一个指针变量来指向RTC寄存器的地址,例如:
```
volatile uint32_t* const RTC_CNTL = (volatile uint32_t*) 0x40002800;
```
其中,0x40002800是RTC_CNTL的基地址。
然后,就可以使用指针来读取RTC_CNTL的数值了,例如:
```
uint32_t rtcValue = *RTC_CNTL;
```
以上代码将RTC_CNTL的值读取到rtcValue变量中。
需要注意的是,使用指针直接访问地址是一种底层的操作,需要对寄存器的位进行具体的处理才能得到有用的信息。对RTC_CNTL寄存器的具体操作可以参考STM32F103C6的技术手册,根据具体需求进行配置和处理。
需要特别关注的是,直接访问地址可能会有一定的风险,因为修改了寄存器的值可能会导致系统不稳定或错误的行为。因此,在使用直接访问地址的方法时,一定要谨慎,并确保对寄存器的操作是正确和安全的。
### 回答3:
STM32F103C6是一款基于ARM Cortex-M3内核的微控制器,可以通过直接访问地址来读取RTC_CNTL(实时时钟控制寄存器)的数值。
首先,我们需要知道RTC_CNTL寄存器的地址,通常可以在芯片的参考手册或数据手册中找到。假设RTC_CNTL的地址为0x4000280C。
接下来,我们可以使用C语言代码示例进行直接访问和读取RTC_CNTL寄存器的数值:
```c
#include <stdint.h>
// 定义RTC_CNTL寄存器的地址
#define RTC_CNTL_ADDR 0x4000280C
// 定义一个函数来读取RTC_CNTL寄存器的数值
uint32_t read_RTC_CNTL(void)
{
// 使用指针来指向RTC_CNTL寄存器的地址
volatile uint32_t *RTC_CNTL_ptr = (uint32_t *)RTC_CNTL_ADDR;
// 直接读取RTC_CNTL寄存器的数值并返回
return *RTC_CNTL_ptr;
}
int main()
{
// 读取RTC_CNTL寄存器的数值并打印出来
uint32_t rtc_cntl_value = read_RTC_CNTL();
printf("RTC_CNTL寄存器的数值为: %X\n", rtc_cntl_value);
return 0;
}
```
上述代码中,首先定义了RTC_CNTL寄存器的地址为0x4000280C。然后,在read_RTC_CNTL函数中,使用一个volatile uint32_t类型的指针RTC_CNTL_ptr来指向RTC_CNTL寄存器的地址。最后,直接通过读取指针RTC_CNTL_ptr的数值来获取RTC_CNTL寄存器的数值,并返回给调用者。
在main函数中,调用read_RTC_CNTL函数来读取RTC_CNTL寄存器的数值,并通过printf函数打印出来。
当然,需要注意的是,直接访问地址读取寄存器的数值需要具备一定的底层硬件操作经验和对芯片的深入了解,同时还需要确保正确设置了芯片的外设时钟和寄存器的访问权限等相关配置。
esp32 蓝牙启动流程_ESP32教你简单进行蓝牙串口调试
ESP32的蓝牙启动流程如下:
1. 初始化蓝牙协议栈
2. 配置蓝牙参数,如设备名称、服务UUID等
3. 注册蓝牙事件回调函数
4. 启动蓝牙广播
5. 开启蓝牙可见性
6. 等待连接
以下是一个简单的ESP32蓝牙串口调试的示例:
```C
#include "esp_bt.h"
#include "esp_bt_main.h"
#include "esp_gap_ble_api.h"
#define GATTS_TAG "GATTS_DEMO"
#define TEST_DEVICE_NAME "ESP32_BLE_UART"
#define TEST_MANUFACTURER_DATA_LEN 17
/* The max length of characteristic value. When the gatt client write or prepare write,
* the data length must be less than MAX_VALUE_LENGTH.
*/
#define MAX_VALUE_LENGTH 500
/* Declare global variable */
static uint8_t test_manufacturer[TEST_MANUFACTURER_DATA_LEN] = {0x4c, 0x00, 0x02, 0x15, 0xE2, 0x0A, 0x39, 0xF4, 0x73, 0xF5, 0x4B, 0xC4, 0xA1, 0x2F, 0x17, 0xD1, 0xAD};
static uint8_t test_service_uuid128[32] = {
/* LSB <--------------------------------------------------------------------------------> MSB */
//first uuid, 16bit, [12],[13] is the value
0x13, 0x2B, 0x01, 0x00, 0x00, 0x00, 0x10, 0x00, 0x80, 0x00, 0x00, 0x80, 0x5F, 0x9B, 0x34, 0xFB,
//second uuid, 32bit, [12], [13], [14], [15] is the value
0x14, 0x2B, 0x01, 0x00, 0x00, 0x00, 0x10, 0x00, 0x80, 0x00, 0x00, 0x80, 0x5F, 0x9B, 0x34, 0xFB,
};
static uint8_t test_service_uuid[16] = {
/* LSB <--------------------------------------------------------------------------------> MSB */
//first uuid, 16bit, [12],[13] is the value
0x01, 0x2B,
//second uuid, 32bit, [12], [13], [14], [15] is the value
0x01, 0x2B, 0x01, 0x00, 0x00, 0x00, 0x10, 0x00, 0x80, 0x00, 0x00, 0x80, 0x5F, 0x9B, 0x34, 0xFB,
};
static uint8_t test_char_uuid[16] = {
/* LSB <--------------------------------------------------------------------------------> MSB */
//first uuid, 16bit, [12],[13] is the value
0x02, 0x2B,
//second uuid, 32bit, [12], [13], [14], [15] is the value
0x02, 0x2B, 0x01, 0x00, 0x00, 0x00, 0x10, 0x00, 0x80, 0x00, 0x00, 0x80, 0x5F, 0x9B, 0x34, 0xFB,
};
static esp_gatt_char_prop_t test_property = 0;
static uint8_t char1_str[] = {0x11,0x22,0x33};
static esp_attr_value_t gatts_demo_char1_val = {
.attr_max_len = MAX_VALUE_LENGTH,
.attr_len = sizeof(char1_str),
.attr_value = char1_str,
};
static uint16_t gatts_demo_handle_table[3];
/* Full Database Description - Used to add attributes into the database */
static const esp_gatts_attr_db_t gatt_db[HRS_IDX_NB] =
{
// Service Declaration
[IDX_SVC] =
{
{ESP_GATT_AUTO_RSP},
{ESP_UUID_LEN_16, (uint8_t *)&primary_service_uuid, ESP_GATT_PERM_READ,
sizeof(test_service_uuid), sizeof(test_service_uuid), (uint8_t *)&test_service_uuid},
ESP_GATT_UUID_PRI_SERVICE,
ESP_GATT_PERM_READ,
sizeof(test_service_uuid),
sizeof(test_service_uuid),
(uint8_t *)&test_service_uuid,
0
},
/* Characteristic Declaration */
[IDX_CHAR_READ] =
{
{ESP_GATT_AUTO_RSP},
{ESP_UUID_LEN_16, (uint8_t *)&character_declaration_uuid, ESP_GATT_PERM_READ,
CHAR_DECLARATION_SIZE, CHAR_DECLARATION_SIZE, (uint8_t *)&test_property},
ESP_GATT_UUID_CHAR_DECLARE,
ESP_GATT_PERM_READ,
CHAR_DECLARATION_SIZE,
CHAR_DECLARATION_SIZE,
(uint8_t *)&test_property,
0
},
/* Characteristic Value */
[IDX_CHAR_VAL_READ] =
{
{ESP_GATT_AUTO_RSP},
{ESP_UUID_LEN_128, (uint8_t *)&test_char_uuid, ESP_GATT_PERM_READ,
MAX_VALUE_LENGTH, sizeof(gatts_demo_char1_val), gatts_demo_char1_val.attr_value},
ESP_UUID_LEN_128,
ESP_GATT_PERM_READ,
MAX_VALUE_LENGTH,
sizeof(gatts_demo_char1_val),
gatts_demo_char1_val.attr_value,
0
},
};
static esp_ble_adv_data_t adv_data = {
.set_scan_rsp = false,
.include_name = true,
.include_txpower = true,
.min_interval = 0x20,
.max_interval = 0x40,
.appearance = 0x00,
.manufacturer_len = TEST_MANUFACTURER_DATA_LEN,
.p_manufacturer_data = test_manufacturer,
.service_data_len = 0,
.p_service_data = NULL,
.service_uuid_len = sizeof(test_service_uuid),
.p_service_uuid = test_service_uuid,
.flag = (ESP_BLE_ADV_FLAG_GEN_DISC | ESP_BLE_ADV_FLAG_BREDR_NOT_SPT),
};
static esp_ble_adv_params_t adv_params = {
.adv_int_min = 0x20,
.adv_int_max = 0x40,
.adv_type = ADV_TYPE_IND,
.own_addr_type = BLE_ADDR_TYPE_PUBLIC,
.peer_addr = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
.peer_addr_type = BLE_ADDR_TYPE_PUBLIC,
.channel_map = ADV_CHNL_ALL,
.adv_filter_policy = ADV_FILTER_ALLOW_SCAN_ANY_CON_ANY,
};
static void gap_event_handler(esp_gap_ble_cb_event_t event, esp_ble_gap_cb_param_t *param)
{
switch (event) {
case ESP_GAP_BLE_ADV_DATA_SET_COMPLETE_EVT:
esp_ble_gap_start_advertising(&adv_params);
break;
case ESP_GAP_BLE_ADV_START_COMPLETE_EVT:
if (param->adv_start_cmpl.status != ESP_BT_STATUS_SUCCESS) {
ESP_LOGE(GATTS_TAG, "advertising start failed");
}
break;
default:
break;
}
}
static void gatts_event_handler(esp_gatts_cb_event_t event, esp_gatt_if_t gatts_if, esp_ble_gatts_cb_param_t *param)
{
switch (event) {
case ESP_GATTS_REG_EVT:
esp_ble_gap_set_device_name(TEST_DEVICE_NAME);
esp_ble_gap_config_adv_data(&adv_data);
break;
case ESP_GATTS_CREAT_ATTR_TAB_EVT:
if (param->add_attr_tab.status != ESP_GATT_OK){
ESP_LOGE(GATTS_TAG, "create attribute table failed, error code=0x%x", param->add_attr_tab.status);
}
else if (param->add_attr_tab.num_handle != HRS_IDX_NB) {
ESP_LOGE(GATTS_TAG, "create attribute table abnormally, num_handle (%d) \
doesn't equal to HRS_IDX_NB(%d)", param->add_attr_tab.num_handle, HRS_IDX_NB);
}
else {
ESP_LOGI(GATTS_TAG, "create attribute table successfully, the number handle = %d\n",param->add_attr_tab.num_handle);
memcpy(gatts_demo_handle_table, param->add_attr_tab.handles, sizeof(gatts_demo_handle_table));
esp_ble_gatts_start_service(gatts_demo_handle_table[IDX_SVC]);
}
break;
case ESP_GATTS_CONNECT_EVT:
ESP_LOGI(GATTS_TAG, "ESP_GATTS_CONNECT_EVT");
break;
case ESP_GATTS_DISCONNECT_EVT:
ESP_LOGI(GATTS_TAG, "ESP_GATTS_DISCONNECT_EVT");
esp_ble_gap_start_advertising(&adv_params);
break;
case ESP_GATTS_WRITE_EVT:
ESP_LOGI(GATTS_TAG, "ESP_GATTS_WRITE_EVT");
break;
case ESP_GATTS_MTU_EVT:
ESP_LOGI(GATTS_TAG, "ESP_GATTS_MTU_EVT, MTU %d", param->mtu.mtu);
break;
case ESP_GATTS_CONF_EVT:
ESP_LOGI(GATTS_TAG, "ESP_GATTS_CONF_EVT");
break;
case ESP_GATTS_EXEC_WRITE_EVT:
ESP_LOGI(GATTS_TAG, "ESP_GATTS_EXEC_WRITE_EVT");
break;
case ESP_GATTS_START_EVT:
ESP_LOGI(GATTS_TAG, "ESP_GATTS_START_EVT");
break;
case ESP_GATTS_STOP_EVT:
ESP_LOGI(GATTS_TAG, "ESP_GATTS_STOP_EVT");
break;
case ESP_GATTS_OPEN_EVT:
ESP_LOGI(GATTS_TAG, "ESP_GATTS_OPEN_EVT");
break;
case ESP_GATTS_CANCEL_OPEN_EVT:
ESP_LOGI(GATTS_TAG, "ESP_GATTS_CANCEL_OPEN_EVT");
break;
case ESP_GATTS_CLOSE_EVT:
ESP_LOGI(GATTS_TAG, "ESP_GATTS_CLOSE_EVT");
break;
case ESP_GATTS_LISTEN_EVT:
ESP_LOGI(GATTS_TAG, "ESP_GATTS_LISTEN_EVT");
break;
case ESP_GATTS_CONGEST_EVT:
ESP_LOGI(GATTS_TAG, "ESP_GATTS_CONGEST_EVT");
break;
case ESP_GATTS_UNREG_EVT:
case ESP_GATTS_DELETE_EVT:
default:
break;
}
}
void app_main()
{
esp_err_t ret;
ESP_LOGI(GATTS_TAG, "ESP_BLUETOOTH_BLE example started.");
esp_bt_controller_config_t bt_cfg = BT_CONTROLLER_INIT_CONFIG_DEFAULT();
ret = esp_bt_controller_init(&bt_cfg);
if (ret) {
ESP_LOGE(GATTS_TAG, "%s initialize controller failed\n", __func__);
return;
}
ret = esp_bt_controller_enable(ESP_BT_MODE_BLE);
if (ret) {
ESP_LOGE(GATTS_TAG, "%s enable controller failed\n", __func__);
return;
}
ret = esp_bluedroid_init();
if (ret) {
ESP_LOGE(GATTS_TAG, "%s init bluetooth failed\n", __func__);
return;
}
ret = esp_bluedroid_enable();
if (ret) {
ESP_LOGE(GATTS_TAG, "%s enable bluetooth failed\n", __func__);
return;
}
ret = esp_ble_gatts_register_callback(gatts_event_handler);
if (ret){
ESP_LOGE(GATTS_TAG, "gatts register error, error code = %x", ret);
return;
}
ret = esp_ble_gap_register_callback(gap_event_handler);
if (ret){
ESP_LOGE(GATTS_TAG, "gap register error, error code = %x", ret);
return;
}
ret = esp_ble_gatts_app_register(ESP_APP_ID);
if (ret){
ESP_LOGE(GATTS_TAG, "gatts app register error, error code = %x", ret);
return;
}
esp_err_t local_mtu_ret = esp_ble_gatt_set_local_mtu(500);
if (local_mtu_ret){
ESP_LOGE(GATTS_TAG, "set local MTU failed, error code = %x", local_mtu_ret);
}
ret = esp_ble_gatts_create_attr_tab(gatt_db, gatts_if, HRS_IDX_NB, ESP_APP_ID);
if (ret){
ESP_LOGE(GATTS_TAG, "create attr table failed, error code = %x", ret);
}
}
```
在这个示例中,我们使用了ESP-IDF提供的蓝牙协议栈和GATT Server框架,实现了一个简单的GATT Server,并且开启了蓝牙广播和可见性,使得其他蓝牙设备可以扫描到并连接我们的设备。在连接建立后,我们可以向GATT Server中的特定Characteristic写入数据,也可以从特定Characteristic读取数据。
相关推荐















