生成一段基于ROS的扩展卡尔曼滤波算法代码,要求订阅小车的里程计数据并通过扩展卡尔曼滤波算法来估算出下一时刻小车的x轴和y轴坐标
时间: 2023-12-14 09:36:48 浏览: 71
以下是一个基于ROS的扩展卡尔曼滤波算法示例代码,用于订阅小车的里程计数据并通过扩展卡尔曼滤波算法来估算下一时刻小车的x轴和y轴坐标。
```cpp
#include <ros/ros.h>
#include <nav_msgs/Odometry.h>
#include <geometry_msgs/PointStamped.h>
#include <geometry_msgs/PoseWithCovarianceStamped.h>
#include <tf/transform_datatypes.h>
#include <Eigen/Core>
#include <Eigen/LU>
// Define the state vector and covariance matrix
Eigen::VectorXd x(3);
Eigen::MatrixXd P(3, 3);
// Define the measurement noise covariance matrix R
Eigen::MatrixXd R(2, 2);
// Define the process noise covariance matrix Q
Eigen::MatrixXd Q(3, 3);
// Define the state transition matrix F and measurement matrix H
Eigen::MatrixXd F(3, 3);
Eigen::MatrixXd H(2, 3);
// Initialize the flag for the first time receiving odom data
bool odom_init = false;
// Initialize the last time stamp of the odom data
ros::Time last_odom_time;
// Callback function for the odom data
void odomCallback(const nav_msgs::Odometry::ConstPtr& odom_msg)
{
// Initialize the state vector x and covariance matrix P using the first odom data
if (!odom_init)
{
x << odom_msg->pose.pose.position.x,
odom_msg->pose.pose.position.y,
tf::getYaw(odom_msg->pose.pose.orientation);
P.setIdentity();
odom_init = true;
}
// Compute the time interval between the current and last odom data
double delta_t = (odom_msg->header.stamp - last_odom_time).toSec();
last_odom_time = odom_msg->header.stamp;
// Update the state transition matrix F and process noise covariance matrix Q
F << 1, 0, -sin(x(2))*odom_msg->twist.twist.linear.x*delta_t,
0, 1, cos(x(2))*odom_msg->twist.twist.linear.x*delta_t,
0, 0, 1;
Q << pow(delta_t, 4)/4, 0, pow(delta_t, 3)/2,
0, pow(delta_t, 4)/4, pow(delta_t, 3)/2,
pow(delta_t, 3)/2, pow(delta_t, 3)/2, pow(delta_t, 2);
// Predict the state vector x and covariance matrix P
Eigen::VectorXd x_pred = F*x;
Eigen::MatrixXd P_pred = F*P*F.transpose() + Q;
// Update the measurement matrix H and measurement noise covariance matrix R
H << 1, 0, 0,
0, 1, 0;
R << 0.1, 0,
0, 0.1;
// Convert the odom data to a PointStamped message for publishing
geometry_msgs::PointStamped point_msg;
point_msg.header.stamp = odom_msg->header.stamp;
point_msg.header.frame_id = odom_msg->header.frame_id;
point_msg.point.x = x_pred(0);
point_msg.point.y = x_pred(1);
point_msg.point.z = 0;
// Convert the state vector x and covariance matrix P to a PoseWithCovarianceStamped message for publishing
geometry_msgs::PoseWithCovarianceStamped pose_msg;
pose_msg.header.stamp = odom_msg->header.stamp;
pose_msg.header.frame_id = odom_msg->header.frame_id;
pose_msg.pose.pose.position.x = x_pred(0);
pose_msg.pose.pose.position.y = x_pred(1);
pose_msg.pose.pose.position.z = 0;
pose_msg.pose.pose.orientation = tf::createQuaternionMsgFromYaw(x_pred(2));
pose_msg.pose.covariance[0] = P_pred(0, 0);
pose_msg.pose.covariance[1] = P_pred(0, 1);
pose_msg.pose.covariance[5] = P_pred(1, 1);
pose_msg.pose.covariance[6] = P_pred(0, 2);
pose_msg.pose.covariance[7] = P_pred(1, 2);
pose_msg.pose.covariance[11] = P_pred(2, 2);
// Publish the PointStamped and PoseWithCovarianceStamped messages
ros::NodeHandle nh;
ros::Publisher point_pub = nh.advertise<geometry_msgs::PointStamped>("pose_estimate", 1);
ros::Publisher pose_pub = nh.advertise<geometry_msgs::PoseWithCovarianceStamped>("pose_estimate_cov", 1);
point_pub.publish(point_msg);
pose_pub.publish(pose_msg);
// Update the state vector x and covariance matrix P using the measurement data
Eigen::VectorXd z(2);
z << odom_msg->pose.pose.position.x,
odom_msg->pose.pose.position.y;
Eigen::VectorXd y = z - H*x_pred;
Eigen::MatrixXd S = H*P_pred*H.transpose() + R;
Eigen::MatrixXd K = P_pred*H.transpose()*S.inverse();
x = x_pred + K*y;
P = (Eigen::MatrixXd::Identity(3, 3) - K*H)*P_pred;
}
int main(int argc, char** argv)
{
ros::init(argc, argv, "ekf_node");
ros::NodeHandle nh;
// Subscribe to the odom data
ros::Subscriber odom_sub = nh.subscribe("odom", 1, odomCallback);
ros::spin();
return 0;
}
```
在这个示例代码中,我们使用了Eigen库来实现矩阵运算。首先,我们定义了状态向量x、协方差矩阵P、测量噪声协方差矩阵R和过程噪声协方差矩阵Q。然后,在odomCallback回调函数中,我们根据接收到的里程计数据更新状态向量x和协方差矩阵P。接着,我们根据更新后的状态向量x和协方差矩阵P,用扩展卡尔曼滤波算法预测下一时刻小车的x轴和y轴坐标,并将预测结果发布为一个PointStamped和PoseWithCovarianceStamped消息。最后,我们使用接收到的里程计数据来更新状态向量x和协方差矩阵P。
这个示例代码中假设小车只能直线行驶,因此状态向量x只包含了小车的x轴和y轴坐标以及方向角度。如果需要考虑小车的转向和加速度等因素,需要根据实际情况修改状态向量、协方差矩阵、过程噪声协方差矩阵和状态转移矩阵。