已知ROS小车car1的里程计数据发布在Odometry中,可以通过rospy.Subscriber('/car1/odom', Odometry, odom_callback)来订阅其里程计数据,请生成一段基于ROS的扩展卡尔曼滤波算法代码,要求订阅小车的里程计数据并通过扩展卡尔曼滤波算法来估算出下一时刻小车的x轴和y轴坐标,要求用python实现
时间: 2023-12-14 21:36:53 浏览: 128
发布里程信息-华为数据之道学习分享
下面是一个基于ROS的扩展卡尔曼滤波算法代码,用于估计小车的x轴和y轴坐标:
```python
import rospy
from nav_msgs.msg import Odometry
from geometry_msgs.msg import Pose, PoseWithCovariance, Twist, TwistWithCovariance
from tf.transformations import euler_from_quaternion, quaternion_from_euler
import numpy as np
class EKF_Localization:
def __init__(self):
rospy.init_node('ekf_localization')
# 初始化协方差矩阵
self.P = np.diag([1.0, 1.0, 1.0, 1.0, 1.0, 1.0])
# 状态转移矩阵
self.F = np.array([[1.0, 0, 0, 1.0, 0, 0],
[0, 1.0, 0, 0, 1.0, 0],
[0, 0, 1.0, 0, 0, 1.0],
[0, 0, 0, 1.0, 0, 0],
[0, 0, 0, 0, 1.0, 0],
[0, 0, 0, 0, 0, 1.0]])
# 系统噪声协方差矩阵
self.Q = np.diag([0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
self.x = np.zeros((6, 1))
self.x[0] = 0.0
self.x[1] = 0.0
self.x[2] = 0.0
self.sub_odom = rospy.Subscriber('/car1/odom', Odometry, self.odom_callback)
self.pub_odom = rospy.Publisher('/car1/ekf_odom', Odometry, queue_size=10)
def odom_callback(self, msg):
# 将里程计数据转换为状态向量
x = np.array([[msg.pose.pose.position.x],
[msg.pose.pose.position.y],
[euler_from_quaternion([msg.pose.pose.orientation.x,
msg.pose.pose.orientation.y,
msg.pose.pose.orientation.z,
msg.pose.pose.orientation.w])[2]],
[msg.twist.twist.linear.x],
[msg.twist.twist.linear.y],
[msg.twist.twist.angular.z]])
# 预测
x_ = self.F @ self.x
P_ = self.F @ self.P @ self.F.T + self.Q
# 更新
z = x - x_
H = np.identity(6)
R = np.diag([0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
S = H @ P_ @ H.T + R
K = P_ @ H.T @ np.linalg.inv(S)
self.x = x_ + K @ z
self.P = (np.identity(6) - K @ H) @ P_
# 将状态向量转换为里程计数据
ekf_odom = Odometry()
ekf_odom.header.frame_id = 'map'
ekf_odom.child_frame_id = 'base_link'
ekf_odom.header.stamp = rospy.Time.now()
ekf_odom.pose.pose = Pose(Point(self.x[0], self.x[1], 0.0), Quaternion(*quaternion_from_euler(0, 0, self.x[2])))
ekf_odom.pose.covariance = np.array([self.P[0][0], self.P[0][1], 0.0, 0.0, 0.0, 0.0,
self.P[1][0], self.P[1][1], 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 99999, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 99999, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 99999, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, self.P[2][2]])
ekf_odom.twist.twist = Twist(Vector3(self.x[3], self.x[4], 0.0), Vector3(0.0, 0.0, self.x[5]))
ekf_odom.twist.covariance = np.array([self.P[3][3], self.P[3][4], 0.0, 0.0, 0.0, 0.0,
self.P[4][3], self.P[4][4], 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 99999, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 99999, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 99999, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, self.P[5][5]])
self.pub_odom.publish(ekf_odom)
def run(self):
rospy.spin()
if __name__ == '__main__':
ekf = EKF_Localization()
ekf.run()
```
该代码中,我们首先初始化了协方差矩阵、状态转移矩阵和系统噪声协方差矩阵。然后,我们通过订阅小车的里程计数据,将其转换为状态向量,并进行预测和更新操作。最后,我们将状态向量转换为里程计数据,并通过发布者将其发送出去。
阅读全文